issues: 316618290
This data as json
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
316618290 | MDU6SXNzdWUzMTY2MTgyOTA= | 2074 | xarray.dot() dask problems | 6213168 | closed | 0 | 10 | 2018-04-22T22:18:10Z | 2018-05-04T21:51:00Z | 2018-05-04T21:51:00Z | MEMBER | xarray.dot() has comparable performance with numpy.einsum. However, when it uses a dask backend, it's much slower than the new dask.array.einsum function (https://github.com/dask/dask/pull/3412). The performance gap widens when the dimension upon which you are reducing is chunked. Also, for some reason The proposed solution is to simply wait for https://github.com/dask/dask/pull/3412 to reach the next release and then reimplement xarray.dot to use dask.array.einsum. This means that dask users will lose the ability to use xarray.dot if they upgrade xarray version but not dask version, but I believe it shouldn't be a big problem for most? ``` import numpy import dask.array import xarray def bench(tchunk, a_by_a, dims, iis): print(f"\nbench({tchunk}, {a_by_a}, {dims}, {iis})")
bench(100, False, ['t'], '...i,...i')
bench( 20, False, ['t'], '...i,...i')
bench(100, True, ['t'], '...i,...i')
bench( 20, True, ['t'], '...i,...i')
bench(100, True, ['s', 't'], '...ij,...ij')
bench( 20, True, ['s', 't'], '...ij,...ij')
bench(20, False, ['t'], ...i,...i) xarray.dot(numpy backend): 297 ms ± 16.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) numpy.einsum: 254 ms ± 15.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) xarray.dot(dask backend): 732 ms ± 74.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) dask.array.einsum: 274 ms ± 12.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) bench(100, True, ['t'], ...i,...i) xarray.dot(numpy backend): 438 ms ± 43.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) numpy.einsum: 415 ms ± 17.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) xarray.dot(dask backend): 633 ms ± 31.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) dask.array.einsum: 431 ms ± 17 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) bench(20, True, ['t'], ...i,...i)
xarray.dot(numpy backend):
457 ms ± 17.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
numpy.einsum:
463 ms ± 24.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
xarray.dot(dask backend):
dimension 't' on 0th function argument to apply_ufunc with dask='parallelized' consists of multiple chunks, but is also a core dimension. To fix, rechunk into a single dask array chunk along this dimension, i.e., bench(100, True, ['s', 't'], ...ij,...ij) xarray.dot(numpy backend): 418 ms ± 14.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) numpy.einsum: 444 ms ± 43.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) xarray.dot(dask backend): 384 ms ± 57.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) dask.array.einsum: 415 ms ± 19.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) bench(20, True, ['s', 't'], ...ij,...ij) xarray.dot(numpy backend): 489 ms ± 2.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) numpy.einsum: 443 ms ± 3.35 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) xarray.dot(dask backend): 585 ms ± 64.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) dask.array.einsum: 455 ms ± 13.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2074/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | 13221727 | issue |