issues: 202423683
This data as json
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
202423683 | MDU6SXNzdWUyMDI0MjM2ODM= | 1224 | fast weighted sum | 6213168 | closed | 0 | 5 | 2017-01-23T00:29:19Z | 2019-08-09T08:36:11Z | 2019-08-09T08:36:11Z | MEMBER | In my project I'm struggling with weighted sums of 2000-4000 dask-based xarrays. The time to reach the final dask-based array, the size of the final dask dict, and the time to compute the actual result are horrendous. So I wrote the below which - as laborious as it may look - gives a performance boost nothing short of miraculous. At the bottom you'll find some benchmarks as well. https://gist.github.com/crusaderky/62832a5ffc72ccb3e0954021b0996fdf In my project, this deflated the size of the final dask dict from 5.2 million keys to 3.3 million and cut a 30% from the time required to define it. I think it's generic enough to be a good addition to the core xarray module. Impressions? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1224/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | 13221727 | issue |