home / github / issues

Menu
  • GraphQL API
  • Search all tables

issues: 1452123685

This data as json

id node_id number title user state locked assignee milestone comments created_at updated_at closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
1452123685 I_kwDOAMm_X85WjaYl 7294 DataArray.transpose with transpose_coords=True does not change coords order 34257249 open 0     6 2022-11-16T19:02:27Z 2022-11-24T20:40:32Z   CONTRIBUTOR      

What happened?

I used DataArray.transpose with transpose_coords=True to change the coords order from startings_dims = "dim_0", "dim_1", "dim_2" to reordered_dims = "dim_2", "dim_1", "dim_0".

The order of dims was correctly transposed but the order of coords remained unchanged.

What did you expect to happen?

I expected the transposed coords to be in the new order:

reordered_dims = "dim_2", "dim_1", "dim_0"

Minimal Complete Verifiable Example

```Python import numpy as np import pandas as pd import xarray as xr

np.random.seed(0) temperature = np.random.randn(4, 4, 3) dim_0_values = [1, 2, 3, 4] dim_1_values = [5, 6, 7, 8] dim_2_values = pd.date_range("2014-09-06", periods=3) starting_dims = "dim_0", "dim_1", "dim_2"

da = xr.DataArray( data=temperature, dims=starting_dims, coords=dict( dim_0=dim_0_values, dim_1=dim_1_values, dim_2=dim_2_values, ), attrs=dict( description="Ambient temperature.", units="degC", ), )

print(f"{da.dims=}") print(f"{da.coords.keys()=}")

reordered_dims = "dim_2", "dim_1", "dim_0" print(f"{da.transpose(reordered_dims).dims=}") print(f"{da.transpose(reordered_dims).coords.keys()=}") print(f"{da.transpose(*reordered_dims, transpose_coords=True).coords.keys()=}") ```

MVCE confirmation

  • [X] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
  • [X] Complete example — the example is self-contained, including all data and the text of any traceback.
  • [X] Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
  • [X] New issue — a search of GitHub Issues suggests this is not a duplicate.

Relevant log output

Python da.dims=('dim_0', 'dim_1', 'dim_2') da.coords.keys()=KeysView(Coordinates: * dim_0 (dim_0) int32 1 2 3 4 * dim_1 (dim_1) int32 5 6 7 8 * dim_2 (dim_2) datetime64[ns] 2014-09-06 2014-09-07 2014-09-08) da.transpose(*reordered_dims).dims=('dim_2', 'dim_1', 'dim_0') da.transpose(*reordered_dims).coords.keys()=KeysView(Coordinates: * dim_0 (dim_0) int32 1 2 3 4 * dim_1 (dim_1) int32 5 6 7 8 * dim_2 (dim_2) datetime64[ns] 2014-09-06 2014-09-07 2014-09-08) da.transpose(*reordered_dims, transpose_coords=True).coords.keys()=KeysView(Coordinates: * dim_0 (dim_0) int32 1 2 3 4 * dim_1 (dim_1) int32 5 6 7 8 * dim_2 (dim_2) datetime64[ns] 2014-09-06 2014-09-07 2014-09-08)

Anything else we need to know?

No response

Environment

INSTALLED VERSIONS ------------------ commit: None python: 3.9.12 (main, Apr 4 2022, 05:22:27) [MSC v.1916 64 bit (AMD64)] python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 85 Stepping 7, GenuineIntel byteorder: little LC_ALL: None LANG: None LOCALE: ('English_United States', '1252') libhdf5: 1.10.6 libnetcdf: None xarray: 2022.6.0 pandas: 1.4.2 numpy: 1.21.5 scipy: 1.9.3 netCDF4: None pydap: None h5netcdf: None h5py: 3.6.0 Nio: None zarr: 2.13.2 cftime: None nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.3.4 dask: 2022.02.1 distributed: 2022.2.1 matplotlib: 3.5.1 cartopy: None seaborn: 0.11.2 numbagg: None fsspec: 2022.02.0 cupy: None pint: None sparse: None flox: None numpy_groupies: None setuptools: 61.2.0 pip: 22.3.1 conda: 4.12.0 pytest: 7.1.1 IPython: 8.2.0 sphinx: 4.4.0
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/7294/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    13221727 issue

Links from other tables

  • 3 rows from issues_id in issues_labels
  • 6 rows from issue in issue_comments
Powered by Datasette · Queries took 0.714ms · About: xarray-datasette