id,node_id,number,title,user,state,locked,assignee,milestone,comments,created_at,updated_at,closed_at,author_association,active_lock_reason,draft,pull_request,body,reactions,performed_via_github_app,state_reason,repo,type 1222609313,I_kwDOAMm_X85I34mh,6560,"netCDF + lazy backend: Error when sel is used with slice, reverse arrange",90036937,closed,0,,,12,2022-05-02T08:13:04Z,2023-03-27T21:05:53Z,2023-03-27T21:05:53Z,NONE,,,,"### What happened? ``` import xarray as xr data = xr.open_dataset('data_example.nc') # wrong a = data.sel(time='1979-1',isobaricInhPa=200).z[:, ::10,::10][:, ::-1,:] ``` It seem that when use sel() , [: , ::-1 , :] and [: , ::10 , ::10] at the same time will cause the second coord will wrong like this. Why just when use sel and[: , ::10 , ::10][: , ::-1 , :] ,it will goes wrong in axis=2( the data DO NOT correspond to the coordinates) ? ### What did you expect to happen? The data correspond to the coordinates on Latitude. ### Minimal Complete Verifiable Example [problem_example.zip](https://github.com/pydata/xarray/files/8618429/problem_example.zip) ### MVCE confirmation - [X] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray. - [x] Complete example — the example is self-contained, including all data and the text of any traceback. - [X] Verifiable example — the example copy & pastes into an IPython prompt or [Binder notebook](https://mybinder.org/v2/gh/pydata/xarray/main?urlpath=lab/tree/doc/examples/blank_template.ipynb), returning the result. - [x] New issue — a search of GitHub Issues suggests this is not a duplicate. ### Relevant log output _No response_ ### Anything else we need to know? _No response_ ### Environment
INSTALLED VERSIONS ------------------ commit: None python: 3.8.12 (default, Oct 12 2021, 03:01:40) [MSC v.1916 64 bit (AMD64)] python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: AMD64 Family 25 Mod el 33 Stepping 0, AuthenticAMD byteorder: little LC_ALL: None LANG: en LOCALE: ('Chinese (Simplified)_China', '936') libhdf5: 1.12.1 libnetcdf: 4.8.1 xarray: 2022.3.0 pandas: 1.4.2 numpy: 1.22.3 scipy: 1.7.3 netCDF4: 1.5.7 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.6.0 nc_time_axis: None PseudoNetCDF: None rasterio: 1.2.10 cfgrib: 0.9.10.1 iris: None bottleneck: None dask: None distributed: None matplotlib: 3.5.1 cartopy: 0.20.2 seaborn: None numbagg: None fsspec: None cupy: None pint: None sparse: None setuptools: 56.0.0 pip: 22.0.4 conda: None pytest: None IPython: 8.3.0 sphinx: 4.5.0
","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/6560/reactions"", ""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,completed,13221727,issue 1222066968,I_kwDOAMm_X85I10MY,6553,"processing errror when using xr.dataset[:,::-10,::10]",90036937,closed,0,,,3,2022-05-01T08:09:56Z,2022-05-02T07:16:05Z,2022-05-01T22:08:36Z,NONE,,,,"### What happened? These two should equals , but not . The coords of latitude are right , but the data is wrong. ### What did you expect to happen? > these two should equals ,but not , latitude was wrong > ``` > import numpy as np > import xarray as xr > data1 = xr.open_dataset('test1111111.nc') ``` > ! ! ! Note,important: After running the second sentence and running the first sentence again, the result will change so that the first sentence is normal! ! ! ! > ``` > #wrong code > In[37]: np.array(data1.sel(time='1990-1' , isobaricInhPa=200 ).z[: , ::-10 , ::10]) > Out[37]: > array([[[109890.25, 109890.75, 109890.75, ..., 109888.25, 109889.25, > 109889.75], > [110014.75, 110017.75, 110020.75, ..., 110006.75, 110009.75, > 110012.25], > [110109.75, 110115.25, 110119.75, ..., 110098.25, 110101.75, > 110106.25], > ..., > [107800.25, 107824.75, 107845.75, ..., 107719.75, 107747.25, > 107775.25], > [107684.25, 107697.75, 107709.75, ..., 107641.25, 107656.25, > 107670.25], > [107585.75, 107587.75, 107589.75, ..., 107578.75, 107581.25, > 107583.25]]], dtype=float32) > ``` > > ``` > #right code > In[38]: np.array( data1.sel(time='1990-1' , isobaricInhPa=200 ).z)[: , ::-10 , ::10] > Out[38]: > array([[[109798.75, 109798.75, 109798.75, ..., 109798.75, 109798.75, > 109798.75], > [109915.75, 109916.75, 109917.25, ..., 109912.75, 109914.25, > 109915.25], > [110037.75, 110040.25, 110043.75, ..., 110028.25, 110030.25, > 110034.25], > ..., > [107776.25, 107797.25, 107818.75, ..., 107702.75, 107727.25, > 107753.25], > [107662.25, 107673.25, 107683.25, ..., 107626.75, 107638.75, > 107650.75], > [107571.25, 107571.25, 107571.25, ..., 107571.25, 107571.25, > 107571.25]]], dtype=float32) > ``` > > The latitude is really messed up. [test1111111.zip](https://github.com/pydata/xarray/files/8596782/test1111111.zip) > I think it is caused by a logic error, this code sometimes works fine, however when reading this file an exception occurs, although the coords are correct, the internal data is completely wrong, please check the processing logic. ### Minimal Complete Verifiable Example _No response_ ### Relevant log output _No response_ ### Anything else we need to know? _No response_ ### Environment
INSTALLED VERSIONS ------------------ commit: None python: 3.8.12 (default, Oct 12 2021, 03:01:40) [MSC v.1916 64 bit (AMD64)] python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: AMD64 Family 25 Model 33 Stepping 0, AuthenticAMD byteorder: little LC_ALL: None LANG: en LOCALE: ('Chinese (Simplified)_China', '936') libhdf5: 1.12.1 libnetcdf: 4.8.1 xarray: 2022.3.0 pandas: 1.4.2 numpy: 1.22.3 scipy: 1.7.3 netCDF4: 1.5.7 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.6.0 nc_time_axis: None PseudoNetCDF: None rasterio: 1.2.10 cfgrib: 0.9.10.1 iris: None bottleneck: None dask: None distributed: None matplotlib: 3.5.1 cartopy: 0.20.2 seaborn: None numbagg: None fsspec: None cupy: None pint: None sparse: None setuptools: 56.0.0 pip: 22.0.4 conda: None pytest: None IPython: 8.3.0 sphinx: 4.5.0
","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/6553/reactions"", ""total_count"": 1, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 1, ""eyes"": 0}",,completed,13221727,issue 1221809615,I_kwDOAMm_X85I01XP,6547,"these two should equals ,but not , latitude was wrong",90036937,closed,0,,,1,2022-04-30T11:34:11Z,2022-04-30T17:31:49Z,2022-04-30T17:31:42Z,NONE,,,,"these two should equals ,but not , latitude was wrong ``` import numpy as np import xarray as xr data1 = xr.open_dataset('test1111111.nc') ``` ``` #wrong code > np.array(data1.sel(time='1990-1' , isobaricInhPa=200 ).z[: , ::-10 , ::10]) Out[37]: array([[[109890.25, 109890.75, 109890.75, ..., 109888.25, 109889.25, 109889.75], [110014.75, 110017.75, 110020.75, ..., 110006.75, 110009.75, 110012.25], [110109.75, 110115.25, 110119.75, ..., 110098.25, 110101.75, 110106.25], ..., [107800.25, 107824.75, 107845.75, ..., 107719.75, 107747.25, 107775.25], [107684.25, 107697.75, 107709.75, ..., 107641.25, 107656.25, 107670.25], [107585.75, 107587.75, 107589.75, ..., 107578.75, 107581.25, 107583.25]]], dtype=float32) ``` ``` #right code > np.array( data1.sel(time='1990-1' , isobaricInhPa=200 ).z)[: , ::-10 , ::10] Out[38]: array([[[109798.75, 109798.75, 109798.75, ..., 109798.75, 109798.75, 109798.75], [109915.75, 109916.75, 109917.25, ..., 109912.75, 109914.25, 109915.25], [110037.75, 110040.25, 110043.75, ..., 110028.25, 110030.25, 110034.25], ..., [107776.25, 107797.25, 107818.75, ..., 107702.75, 107727.25, 107753.25], [107662.25, 107673.25, 107683.25, ..., 107626.75, 107638.75, 107650.75], [107571.25, 107571.25, 107571.25, ..., 107571.25, 107571.25, 107571.25]]], dtype=float32) ``` The latitude is really messed up. [test1111111.zip](https://github.com/pydata/xarray/files/8596782/test1111111.zip) _Originally posted by @jesieleo in https://github.com/pydata/xarray/discussions/6546_","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/6547/reactions"", ""total_count"": 1, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 1, ""eyes"": 0}",,completed,13221727,issue