id,node_id,number,title,user,state,locked,assignee,milestone,comments,created_at,updated_at,closed_at,author_association,active_lock_reason,draft,pull_request,body,reactions,performed_via_github_app,state_reason,repo,type
656982083,MDU6SXNzdWU2NTY5ODIwODM=,4224,wrong time encoding after padding,8161792,open,0,,,3,2020-07-15T00:46:53Z,2022-04-29T17:39:17Z,,NONE,,,,"
**What happened**:
If I open a netcdf with default settings (contain a daily time dimension) and then pad with hourly values, even the padded dataset shows hourly time values, the hourly values cannot be saved. I think this is due to the encoding, but I'm not sure how to fix it.
**What you expected to happen**:
I expected the final line of code give me
```python
#array(['2000-01-01T00:00:00.000000000', '2000-01-01T01:00:00.000000000',
# '2000-01-01T02:00:00.000000000', '2000-01-01T03:00:00.000000000',
# '2000-01-01T04:00:00.000000000'], dtype='datetime64[ns]')
```
Instead, it outputs
```python
#array(['2000-01-01T00:00:00.000000000', '2000-01-01T00:00:00.000000000',
# '2000-01-01T00:00:00.000000000', '2000-01-01T00:00:00.000000000',
# '2000-01-01T00:00:00.000000000'], dtype='datetime64[ns]')
```
**Minimal Complete Verifiable Example**:
```python
import xarray as xr
time = pd.date_range(""2000-01-01"", freq=""1D"", periods=365 )
ds = xr.Dataset({""foo"": (""time"", np.arange(365)), ""time"": time})
ds.to_netcdf('test5.nc')
ds = xr.open_dataset('test5.nc')
ds.time.encoding
# padding
ds_hourly = ds.resample(time='1h').pad()
ds_hourly.time.values[0:5]
#array(['2000-01-01T00:00:00.000000000', '2000-01-01T01:00:00.000000000',
# '2000-01-01T02:00:00.000000000', '2000-01-01T03:00:00.000000000',
# '2000-01-01T04:00:00.000000000'], dtype='datetime64[ns]')
ds_hourly.to_netcdf('test6.nc')
# load the padded data file
ds_hourly_load = xr.open_dataset('test6.nc')
ds_hourly_load.time.values[0:5]
#array(['2000-01-01T00:00:00.000000000', '2000-01-01T00:00:00.000000000',
# '2000-01-01T00:00:00.000000000', '2000-01-01T00:00:00.000000000',
# '2000-01-01T00:00:00.000000000'], dtype='datetime64[ns]')
```
**Anything else we need to know?**:
**Environment**:
xarray version: '0.15.1'
Output of xr.show_versions()
","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/4224/reactions"", ""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,,13221727,issue
668905666,MDU6SXNzdWU2Njg5MDU2NjY=,4291,resample function gives 0s instead of NaNs,8161792,closed,0,,,3,2020-07-30T15:59:32Z,2020-08-05T16:55:58Z,2020-08-05T16:55:58Z,NONE,,,,"
**What happened**:
When I use `resample(time='1d').sum(dim='time')` to resample a time series with NaNs, the resampled result gives me 0s instead of NaNs, while NaNs should be the correct answer.
**What you expected to happen**:
NaNs should be the correct answer.
**Minimal Complete Verifiable Example**:
```python
import xarray as xr
dates = pd.date_range('20200101', '20200601', freq='h')
data = np.linspace(0, 10, num=len(dates))
data[0:30*24] = np.nan
da = xr.DataArray(data, coords=[dates], dims='time')
da.plot()
# Instead of NaNs, the resampled time series in January 20202 give us 0s, which not right.
da.resample(time='1d', skipna=True).sum(dim='time', skipna=True).plot()
```
**Anything else we need to know?**:
Did I misunderstand something here? Thanks!
**Environment**:
xarray - '0.15.1'
Output of xr.show_versions()
xarray - '0.15.1'
","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/4291/reactions"", ""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,completed,13221727,issue