id,node_id,number,title,user,state,locked,assignee,milestone,comments,created_at,updated_at,closed_at,author_association,active_lock_reason,draft,pull_request,body,reactions,performed_via_github_app,state_reason,repo,type
1668898601,I_kwDOAMm_X85jeV8p,7758,Provide a way to specify how long open_dataset tries to fetch data before timing out,33153877,open,0,,,6,2023-04-14T20:13:52Z,2023-04-26T15:31:06Z,,NONE,,,,"### Is your feature request related to a problem?

I encountered an issue with the open_dataset function in my code when the server I fetch data from experienced a network issue. The whole script froze because open_dataset was unable to fetch the data from the server.

### Describe the solution you'd like

An argument that allows you to specify how long open_dataset tries to fetch the data before timing out.

### Describe alternatives you've considered

Right now I'm considering trying to send a HEAD request to the server and checking the response with a try-except block to catch a bad status code. I'm not sure how robust this alternative is, and I would prefer if there would be a way to natively specify a timeout in open_dataset.

### Additional context

_No response_","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/7758/reactions"", ""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,,13221727,issue
1572434353,I_kwDOAMm_X85duXGx,7504,Selecting dates with .sel() doesn't work when time index is in cftime,33153877,open,0,,,2,2023-02-06T11:56:07Z,2023-02-06T18:27:15Z,,NONE,,,,"### What happened?

When I try to select a subset of the data in a dataset/array with a list containing dates it fails when the time index is in cftime, and I get the following error message:

`KeyError: ""not all values found in index 'time'""`

### What did you expect to happen?

I expect selecting a set of dates with a list to work the same way as when the time index is in datetime64.

### Minimal Complete Verifiable Example

```Python
import xarray as xr
import numpy as np

ds = xr.open_dataset(""https://thredds.met.no/thredds/dodsC/osisaf/met.no/ice/index/v2p1/nh/osisaf_nh_sie_daily.nc"")

# Time coordinates are in datetime64, and selecting dates with a list works.
print(ds.time)
print(ds.sel(time=[""2023-01-01"", ""2023-01-02""]))

# Converting the calendar to all_leap changes the time coordinates to use cftime instead of datetime64.
ds = ds.convert_calendar(""all_leap"", missing=np.nan).interpolate_na()

# Time coordinates are in cftime, and selecting dates with a list fails.
print(ds.time)
print(ds.sel(time=[""2023-01-01"", ""2023-01-02""]))
```


### MVCE confirmation

- [X] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
- [X] Complete example — the example is self-contained, including all data and the text of any traceback.
- [X] Verifiable example — the example copy & pastes into an IPython prompt or [Binder notebook](https://mybinder.org/v2/gh/pydata/xarray/main?urlpath=lab/tree/doc/examples/blank_template.ipynb), returning the result.
- [X] New issue — a search of GitHub Issues suggests this is not a duplicate.

### Relevant log output

```Python
(geoscience) [michael@localhost ~]$ python minimal.py 
<xarray.DataArray 'time' (time: 16107)>
array(['1979-01-01T00:00:00.000000000', '1979-01-02T00:00:00.000000000',
       '1979-01-03T00:00:00.000000000', ..., '2023-02-03T00:00:00.000000000',
       '2023-02-04T00:00:00.000000000', '2023-02-05T00:00:00.000000000'],
      dtype='datetime64[ns]')
Coordinates:
  * time           (time) datetime64[ns] 1979-01-01 1979-01-02 ... 2023-02-05
    sic_threshold  float32 ...
    lat            float32 ...
    lon            float32 ...
Attributes:
    standard_name:          time
    long_name:              time of the observation (centered)
    coverage_content_type:  auxiliaryInformation
    axis:                   T
<xarray.Dataset>
Dimensions:        (time: 2, nv: 2)
Coordinates:
  * time           (time) datetime64[ns] 2023-01-01 2023-01-02
    sic_threshold  float32 ...
    lat            float32 ...
    lon            float32 ...
Dimensions without coordinates: nv
Data variables:
    lat_bounds     (nv) float32 ...
    lon_bounds     (nv) float32 ...
    area           |S64 ...
    sie            (time) float64 ...
    source         (time) float64 ...
Attributes: (12/35)
    title:                   Daily Northern Hemisphere Sea Ice Extent from EU...
    product_id:              OSI-420
    product_name:            OSI SAF Sea Ice Index
    product_status:          demonstration
    version:                 v2p1
    summary:                 Time series of Daily Sea Ice Extent (SIE) for No...
    ...                      ...
    distribution_statement:  Free
    copyright_statement:     Copyright 2023 EUMETSAT
    references:              Product User Manual for OSI-420, Lavergne et al....
    featureType:             timeSeries
    DODS.strlen:             2
    DODS.dimName:            nchar
<xarray.DataArray 'time' (time: 16140)>
array([cftime.DatetimeAllLeap(1979, 1, 1, 0, 0, 0, 0, has_year_zero=True),
       cftime.DatetimeAllLeap(1979, 1, 2, 0, 0, 0, 0, has_year_zero=True),
       cftime.DatetimeAllLeap(1979, 1, 3, 0, 0, 0, 0, has_year_zero=True), ...,
       cftime.DatetimeAllLeap(2023, 2, 3, 0, 0, 0, 0, has_year_zero=True),
       cftime.DatetimeAllLeap(2023, 2, 4, 0, 0, 0, 0, has_year_zero=True),
       cftime.DatetimeAllLeap(2023, 2, 5, 0, 0, 0, 0, has_year_zero=True)],
      dtype=object)
Coordinates:
  * time           (time) object 1979-01-01 00:00:00 ... 2023-02-05 00:00:00
    lat            float32 90.0
    lon            float32 0.0
    sic_threshold  float32 0.15
Attributes:
    standard_name:          time
    long_name:              time of the observation (centered)
    coverage_content_type:  auxiliaryInformation
    axis:                   T
Traceback (most recent call last):
  File ""/var/home/michael/minimal.py"", line 15, in <module>
    print(ds.sel(time=[""2023-01-01"", ""2023-01-02""]))
  File ""/var/home/michael/mambaforge/envs/geoscience/lib/python3.10/site-packages/xarray/core/dataset.py"", line 2554, in sel
    query_results = map_index_queries(
  File ""/var/home/michael/mambaforge/envs/geoscience/lib/python3.10/site-packages/xarray/core/indexing.py"", line 183, in map_index_queries
    results.append(index.sel(labels, **options))  # type: ignore[call-arg]
  File ""/var/home/michael/mambaforge/envs/geoscience/lib/python3.10/site-packages/xarray/core/indexes.py"", line 480, in sel
    raise KeyError(f""not all values found in index {coord_name!r}"")
KeyError: ""not all values found in index 'time'""
```


### Anything else we need to know?

_No response_

### Environment

<details>

/var/home/michael/mambaforge/envs/geoscience/lib/python3.10/site-packages/_distutils_hack/__init__.py:33: UserWarning: Setuptools is replacing distutils.
  warnings.warn(""Setuptools is replacing distutils."")

INSTALLED VERSIONS
------------------
commit: None
python: 3.10.9 | packaged by conda-forge | (main, Feb  2 2023, 20:20:04) [GCC 11.3.0]
python-bits: 64
OS: Linux
OS-release: 6.1.9-200.fc37.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8
LOCALE: ('en_GB', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.8.1

xarray: 2022.11.0
pandas: 1.5.1
numpy: 1.23.4
scipy: 1.9.3
netCDF4: 1.6.1
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: 1.3.6
dask: None
distributed: None
matplotlib: 3.6.2
cartopy: 0.21.0
seaborn: 0.12.1
numbagg: None
fsspec: None
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 65.5.1
pip: 22.3.1
conda: None
pytest: None
IPython: 8.6.0
sphinx: None
</details>
","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/7504/reactions"", ""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,,13221727,issue
1052918815,I_kwDOAMm_X84-wkQf,5987,Plotting interpolated data causes artefacts,33153877,closed,1,,,8,2021-11-14T11:50:13Z,2021-11-19T22:35:09Z,2021-11-19T22:35:09Z,NONE,,,,"<!-- Please include a self-contained copy-pastable example that generates the issue if possible.

Please be concise with code posted. See guidelines below on how to provide a good bug report:

- Craft Minimal Bug Reports: http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports
- Minimal Complete Verifiable Examples: https://stackoverflow.com/help/mcve

Bug reports that follow these guidelines are easier to diagnose, and so are often handled much more quickly.
-->

**What happened**:

I'm trying to do some analysis of CMIP6 model data, and I want to plot multi-model ensembles. In order to do that I need to regrid all of the models to a common grid. Whenever I try to plot data from a regridded model there's a white line along the central longitude and the poles. I use the PlateCarree projection and it doesn't matter what I choose as the central longitude; there's always a white line there.

The code I've included below produces 4 plots. The first one is of data that hasn't been interpolated and there's no white line:

![mpi_ok](https://user-images.githubusercontent.com/33153877/141679217-9eb74a1e-b4da-458b-8e35-313066a2ab15.png)

The next three are with interpolated data and with different central longitudes. They all have a white line at the central longitude.

**central_longitude=0**

![mpi_bad_1](https://user-images.githubusercontent.com/33153877/141679424-b976cffc-5601-453d-a44a-1edee6741a25.png)

**central_longitude=33**

![mpi_bad_2](https://user-images.githubusercontent.com/33153877/141679434-05f1b1f5-cfec-4d27-a293-9f582ee8e098.png)

**central_longitude=164**

![mpi_bad_3](https://user-images.githubusercontent.com/33153877/141679443-9673d8f1-d018-44dc-8975-18581f077f3d.png)




**What you expected to happen**:

No plot artefacts.

**Minimal Complete Verifiable Example**:

```python
import xarray as xr
import matplotlib.pyplot as plt
import cartopy.crs as ccrs

cesm2_waccm = xr.open_dataset('pr_day_CESM2-WACCM_ssp245_r2i1p1f1_gn_20750101-20841231.nc')
mpi = xr.open_dataset('pr_day_MPI-ESM1-2-LR_ssp245_r1i1p1f1_gn_20750101-20941231.nc')

cesm2_waccm_subset = cesm2_waccm.sel(time=slice('2075-01-01', '2075-12-31')).mean(dim='time')
mpi_subset = mpi.sel(time=slice('2075-01-01', '2075-12-31')).mean(dim='time')

map_proj = ccrs.PlateCarree()

# This works.
plot = mpi_subset.pr.plot(subplot_kws={'projection': map_proj})
plot.axes.coastlines()
plt.show()

mpi_interp = mpi_subset.interp(lat=cesm2_waccm_subset['lat'], lon=cesm2_waccm_subset['lon'])

# A randomly chosen set of central longitudes for plots.
longitudes = [0, 33, 164]

for lon in longitudes:
   map_proj = ccrs.PlateCarree(central_longitude=lon)

   # Has a white line at the central longitude.
   plot = mpi_interp.pr.plot(subplot_kws={'projection': map_proj})
   plot.axes.coastlines()
   plt.show()

```

**Anything else we need to know?**:

Here's the data I used for plotting:

https://climate.uiogeo-apps.sigma2.no/ESGF/CMIP6/ScenarioMIP/NCAR/CESM2-WACCM/ssp245/r2i1p1f1/day/pr/gn/v20200224/pr_day_CESM2-WACCM_ssp245_r2i1p1f1_gn_20750101-20841231.nc

https://climate.uiogeo-apps.sigma2.no/ESGF/CMIP6/ScenarioMIP/MPI-M/MPI-ESM1-2-LR/ssp245/r1i1p1f1/day/pr/gn/v20190710/pr_day_MPI-ESM1-2-LR_ssp245_r1i1p1f1_gn_20750101-20941231.nc

**Environment**:

<details><summary>Output of <tt>xr.show_versions()</tt></summary>

<!-- Paste the output here xr.show_versions() here -->

```
In [3]: xr.show_versions()

INSTALLED VERSIONS
------------------
commit: None
python: 3.9.7 | packaged by conda-forge | (default, Sep 29 2021, 19:23:11) 
[GCC 9.4.0]
python-bits: 64
OS: Linux
OS-release: 5.14.16-301.fc35.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8
LOCALE: ('en_GB', 'UTF-8')
libhdf5: 1.12.1
libnetcdf: None

xarray: 0.20.1
pandas: 1.3.4
numpy: 1.21.4
scipy: 1.7.2
netCDF4: None
pydap: None
h5netcdf: 0.11.0
h5py: 3.4.0
Nio: None
zarr: None
cftime: 1.5.1.1
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: None
dask: None
distributed: None
matplotlib: 3.3.2
cartopy: 0.20.1
seaborn: None
numbagg: None
fsspec: None
cupy: None
pint: None
sparse: None
setuptools: 58.5.3
pip: 21.3.1
conda: None
pytest: None
IPython: 7.29.0
sphinx: None
```

</details>","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/5987/reactions"", ""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,completed,13221727,issue