id,node_id,number,title,user,state,locked,assignee,milestone,comments,created_at,updated_at,closed_at,author_association,active_lock_reason,draft,pull_request,body,reactions,performed_via_github_app,state_reason,repo,type 331668890,MDU6SXNzdWUzMzE2Njg4OTA=,2227,Slow performance of isel,4180033,open,0,,,28,2018-06-12T16:46:14Z,2023-03-14T18:54:16Z,,NONE,,,,"Hi, I get a very slow performance of Dataset.isel or DataArray.isel in comparison with the native numpy approach. Do you know where this comes from? ```python ds = xr.Dataset( { ""a"": (""time"", np.arange(55_000_000)) }, coords={ ""time"": np.arange(55_000_000) } ) time_filter = ds.time > 50_000 ``` Select some values with DataArray.isel: ```python %timeit ds.a.isel(time=time_filter) ``` `2.22 s ± 375 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)` Use the native numpy approach: ```python %timeit ds.a.values[time_filter] ``` `163 ms ± 12.1 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)`
INSTALLED VERSIONS ------------------ commit: None python: 3.6.5.final.0 python-bits: 64 OS: Linux OS-release: 3.16.0-4-amd64 machine: x86_64 processor: byteorder: little LC_ALL: None LANG: en_US.utf8 LOCALE: en_US.UTF-8 xarray: 0.10.4 pandas: 0.23.0 numpy: 1.14.2 scipy: 1.1.0 netCDF4: 1.4.0 h5netcdf: 0.5.1 h5py: 2.8.0 Nio: None zarr: None bottleneck: 1.2.1 cyordereddict: None dask: 0.17.5 distributed: 1.21.8 matplotlib: 2.2.2 cartopy: 0.16.0 seaborn: 0.8.1 setuptools: 39.1.0 pip: 9.0.3 conda: None pytest: 3.5.1 IPython: 6.4.0 sphinx: 1.7.4
","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/2227/reactions"", ""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,,13221727,issue