id,node_id,number,title,user,state,locked,assignee,milestone,comments,created_at,updated_at,closed_at,author_association,active_lock_reason,draft,pull_request,body,reactions,performed_via_github_app,state_reason,repo,type
1473329967,I_kwDOAMm_X85X0Tsv,7350,Coordinate variable gains coordinate on subset,221526,closed,0,,,5,2022-12-02T19:18:14Z,2022-12-05T22:56:30Z,2022-12-05T22:56:30Z,CONTRIBUTOR,,,,"### What happened?
When subsetting a DataArray along a dimension down to a single item, the other coordinate variables gain this scalar coordinate.
### What did you expect to happen?
Coordinate variables should not have their coordinates changed.
### Minimal Complete Verifiable Example
```Python
import numpy as np
import xarray as xr
lat = np.array([25, 35, 45])
lon = np.array([-105, -95, -85, -75])
time = np.array([0, 1])
data = np.arange(lat.size * lon.size * time.size)
test_data = xr.DataArray(data.reshape((time.size, lat.size, lon.size)),
coords=dict(lat=lat, lon=lon, time=time),
dims=('time', 'lat', 'lon'))
print(test_data.lat.coords) # Only 'lat'
print(test_data.isel(time=0).lat.coords) # Has both 'lat' and 'time'
pritn(test_data.isel(time=[0, 1]).lat.coords) # Only 'lat'
```
### MVCE confirmation
- [X] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
- [X] Complete example — the example is self-contained, including all data and the text of any traceback.
- [X] Verifiable example — the example copy & pastes into an IPython prompt or [Binder notebook](https://mybinder.org/v2/gh/pydata/xarray/main?urlpath=lab/tree/doc/examples/blank_template.ipynb), returning the result.
- [X] New issue — a search of GitHub Issues suggests this is not a duplicate.
### Relevant log output
_No response_
### Anything else we need to know?
This occurs with both the latest 2022.11.0 release and current main.
### Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.8 | packaged by conda-forge | (main, Nov 22 2022, 08:31:57) [Clang 14.0.6 ]
python-bits: 64
OS: Darwin
OS-release: 21.6.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2022.11.0
pandas: 1.5.2
numpy: 1.23.5
scipy: 1.9.3
netCDF4: 1.6.2
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: 0.9.10.2
iris: None
bottleneck: 1.3.5
dask: 2022.6.1
distributed: 2022.6.1
matplotlib: 3.6.2
cartopy: 0.21.0
seaborn: None
numbagg: None
fsspec: 2022.11.0
cupy: None
pint: 0.20.1
sparse: None
flox: None
numpy_groupies: None
setuptools: 65.5.1
pip: 22.3.1
conda: None
pytest: 7.2.0
IPython: 8.6.0
sphinx: 5.3.0
","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/7350/reactions"", ""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,completed,13221727,issue
667550022,MDU6SXNzdWU2Njc1NTAwMjI=,4283,Selection with datetime64[ns] fails with Pandas 1.1.0,221526,closed,0,,,2,2020-07-29T05:01:14Z,2020-09-16T01:33:30Z,2020-09-16T01:33:30Z,CONTRIBUTOR,,,,"I ran into this issue with a netCDF file with the following time variable:
```
double time1(time1) ;
time1:_FillValue = NaN ;
time1:standard_name = ""time"" ;
time1:long_name = ""time"" ;
time1:udunits = ""Hour since 2017-09-05T12:00:00Z"" ;
time1:units = ""Hour since 2017-09-05T12:00:00+00:00"" ;
time1:calendar = ""proleptic_gregorian"" ;
time1 = 0, 3, 6, 9, 12, 15, 18, 21, 24 ;
```
but we can reproduce the problem with something as simple as:
```python
import numpy as np
import xarray as xr
t = np.array(['2017-09-05T12:00:00.000000000', '2017-09-05T15:00:00.000000000'], dtype='datetime64[ns]')
da = xr.DataArray(np.ones(t.shape), dims=('time',), coords=(t,))
da.loc[{'time':t[0]}] # Works on pandas 1.0.5
```
this produces:
```pytb
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
in
----> 1 da.loc[{'time':t[0]}]
~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/dataarray.py in __getitem__(self, key)
196 labels = indexing.expanded_indexer(key, self.data_array.ndim)
197 key = dict(zip(self.data_array.dims, labels))
--> 198 return self.data_array.sel(**key)
199
200 def __setitem__(self, key, value) -> None:
~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/dataarray.py in sel(self, indexers, method, tolerance, drop, **indexers_kwargs)
1147
1148 """"""
-> 1149 ds = self._to_temp_dataset().sel(
1150 indexers=indexers,
1151 drop=drop,
~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/dataset.py in sel(self, indexers, method, tolerance, drop, **indexers_kwargs)
2099 """"""
2100 indexers = either_dict_or_kwargs(indexers, indexers_kwargs, ""sel"")
-> 2101 pos_indexers, new_indexes = remap_label_indexers(
2102 self, indexers=indexers, method=method, tolerance=tolerance
2103 )
~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/coordinates.py in remap_label_indexers(obj, indexers, method, tolerance, **indexers_kwargs)
394 }
395
--> 396 pos_indexers, new_indexes = indexing.remap_label_indexers(
397 obj, v_indexers, method=method, tolerance=tolerance
398 )
~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/indexing.py in remap_label_indexers(data_obj, indexers, method, tolerance)
268 coords_dtype = data_obj.coords[dim].dtype
269 label = maybe_cast_to_coords_dtype(label, coords_dtype)
--> 270 idxr, new_idx = convert_label_indexer(index, label, dim, method, tolerance)
271 pos_indexers[dim] = idxr
272 if new_idx is not None:
~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/indexing.py in convert_label_indexer(index, label, index_name, method, tolerance)
187 indexer = index.get_loc(label.item())
188 else:
--> 189 indexer = index.get_loc(
190 label.item(), method=method, tolerance=tolerance
191 )
~/miniconda3/envs/py38/lib/python3.8/site-packages/pandas/core/indexes/datetimes.py in get_loc(self, key, method, tolerance)
620 else:
621 # unrecognized type
--> 622 raise KeyError(key)
623
624 try:
KeyError: 1504612800000000000
```
what's interesting is changing the units of `datetime64` to `[s]` works:
```python
import numpy as np
import xarray as xr
t = np.array(['2017-09-05T12:00:00.000000000', '2017-09-05T15:00:00.000000000'], dtype='datetime64[s]')
da = xr.DataArray(np.ones(t.shape), dims=('time',), coords=(t,))
da.loc[{'time':t[0]}] # Works
```
**Environment**:
Python 3.8 from conda-forge on macOS 10.15.4
Output of xr.show_versions()
INSTALLED VERSIONS
------------------
commit: None
python: 3.8.5 | packaged by conda-forge | (default, Jul 24 2020, 01:06:20)
[Clang 10.0.1 ]
python-bits: 64
OS: Darwin
OS-release: 19.6.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
libhdf5: 1.10.6
libnetcdf: 4.7.4
xarray: 0.16.0
pandas: 1.1.0
numpy: 1.19.1
scipy: 1.5.2
netCDF4: 1.5.4
pydap: None
h5netcdf: None
h5py: 2.10.0
Nio: None
zarr: None
cftime: 1.2.1
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: 0.9.8.3
iris: None
bottleneck: None
dask: 2.21.0
distributed: 2.21.0
matplotlib: 3.3.0
cartopy: 0.18.0
seaborn: None
numbagg: None
pint: 0.14
setuptools: 49.2.0.post20200712
pip: 20.1.1
conda: None
pytest: 6.0.0
IPython: 7.16.1
sphinx: 2.4.4
","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/4283/reactions"", ""total_count"": 4, ""+1"": 4, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,completed,13221727,issue
318761320,MDU6SXNzdWUzMTg3NjEzMjA=,2090,strftime and/or format support for DatetimeAccessor,221526,closed,0,,,1,2018-04-29T23:55:12Z,2019-06-01T07:51:17Z,2019-06-01T07:51:17Z,CONTRIBUTOR,,,,"There's no easy way currently to control the conversion to string of time values/series. For this purpose, Panda's own `.dt` attribute has an implementation of [strftime](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.dt.strftime.html).
Is there interest in adding similar functionality to xarray?","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/2090/reactions"", ""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,completed,13221727,issue
303727896,MDU6SXNzdWUzMDM3Mjc4OTY=,1976,"What's wrong with ""conflicting"" _FillValue and missing_value?",221526,closed,0,,,2,2018-03-09T05:21:27Z,2018-03-09T17:45:35Z,2018-03-09T17:45:35Z,CONTRIBUTOR,,,,"So this exception:
```
ValueError: Conflicting _FillValue and missing_value attrs on a variable 'MergedBaseReflectivityQC_altitude_above_msl': -999.0 vs. -99.0
Consider opening the offending dataset using decode_cf=False, correcting the attrs and decoding explicitly using xarray.decode_cf().
```
Why is having `_FillValue` and `missing_value` different considered an error in decoding CF? It's perfectly CF-compliant, especially since `_FillValue` is a scalar (used by the netCDF library to initialize an array), and `missing_value` can be a vector (representing one or more undefined or invalid values).
This happens in this case because the source GRIB file has one value specified for ""missing"" (maps to `missing_value`) and another for ""no coverage"" (which has been mapped to `_FillValue`).
Is this a technical limitation? Or just something that needs an implementation?","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/1976/reactions"", ""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,completed,13221727,issue
236595831,MDU6SXNzdWUyMzY1OTU4MzE=,1459,xarray.Dataset from existing netCDF4.Dataset,221526,closed,0,,,2,2017-06-16T21:03:21Z,2017-08-31T17:18:51Z,2017-08-31T17:18:51Z,CONTRIBUTOR,,,,"It would be really handy to be able to initialize a `xarray.Dataset` instance from an already opened instance of `netCDF4.Dataset`. I have a lot of code where I'm already returning an opened netCDF4 file and this would streamline the process of hooking xarray into that.
It seems like the quick solution here would be to make `NetCDF4DataStore` accept a `netCDF4.Dataset` instance as `filename`, which would bypass the creation of a new instance. Thoughts?","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/1459/reactions"", ""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,completed,13221727,issue