id,node_id,number,title,user,state,locked,assignee,milestone,comments,created_at,updated_at,closed_at,author_association,active_lock_reason,draft,pull_request,body,reactions,performed_via_github_app,state_reason,repo,type 636666706,MDU6SXNzdWU2MzY2NjY3MDY=,4146,sparse upstream-dev test failures,2448579,closed,0,,,4,2020-06-11T02:20:11Z,2021-03-17T23:10:45Z,2020-06-16T16:00:10Z,MEMBER,,,,"Full log here: https://dev.azure.com/xarray/xarray/_build/results?buildId=3023&view=logs&jobId=2280efed-fda1-53bd-9213-1fa8ec9b4fa8&j=2280efed-fda1-53bd-9213-1fa8ec9b4fa8&t=175181ee-1928-5a6b-f537-168f7a8b7c2d Here are three of the errors: ``` /usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/sparse/_coo/umath.py:739: SystemError _ test_variable_method[obj.where(*(), **{'cond': \n})-True] _ TypeError: expected dtype object, got 'numpy.dtype[uint64]' ``` ``` def _match_coo(*args, **kwargs): """""" Matches the coordinates for any number of input :obj:`COO` arrays. Equivalent to ""sparse"" broadcasting for all arrays. Parameters ---------- args : Tuple[COO] The input :obj:`COO` arrays. return_midx : bool Whether to return matched indices or matched arrays. Matching only supported for two arrays. ``False`` by default. cache : dict Cache of things already matched. No cache by default. Returns ------- matched_idx : List[ndarray] The indices of matched elements in the original arrays. Only returned if ``return_midx`` is ``True``. matched_arrays : List[COO] The expanded, matched :obj:`COO` objects. Only returned if ``return_midx`` is ``False``. """""" from .core import COO from .common import linear_loc cache = kwargs.pop(""cache"", None) return_midx = kwargs.pop(""return_midx"", False) broadcast_shape = kwargs.pop(""broadcast_shape"", None) if kwargs: linear = [idx[s] for idx, s in zip(linear, sorted_idx)] > matched_idx = _match_arrays(*linear) E SystemError: CPUDispatcher() returned a result with an error set ``` ``` _______________________________ test_dask_token ________________________________ @requires_dask def test_dask_token(): import dask s = sparse.COO.from_numpy(np.array([0, 0, 1, 2])) # https://github.com/pydata/sparse/issues/300 s.__dask_tokenize__ = lambda: dask.base.normalize_token(s.__dict__) a = DataArray(s) t1 = dask.base.tokenize(a) t2 = dask.base.tokenize(a) t3 = dask.base.tokenize(a + 1) assert t1 == t2 assert t3 != t2 assert isinstance(a.data, sparse.COO) ac = a.chunk(2) t4 = dask.base.tokenize(ac) t5 = dask.base.tokenize(ac + 1) assert t4 != t5 > assert isinstance(ac.data._meta, sparse.COO) E AssertionError: assert False E + where False = isinstance(array([], dtype=int64), ) E + where array([], dtype=int64) = dask.array, shape=(4,), dtype=int64, chunksize=(2,), chunktype=numpy.ndarray>._meta E + where dask.array, shape=(4,), dtype=int64, chunksize=(2,), chunktype=numpy.ndarray> = \ndask.array, shape=(4,), dtype=int64, chunksize=(2,), chunktype=numpy.ndarray>\nDimensions without coordinates: dim_0.data E + and = sparse.COO ``` ","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/4146/reactions"", ""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,completed,13221727,issue 636665269,MDU6SXNzdWU2MzY2NjUyNjk=,4145,Fix matplotlib in upstream-dev test config,2448579,closed,0,,,4,2020-06-11T02:15:52Z,2020-06-12T09:11:31Z,2020-06-12T09:11:31Z,MEMBER,,,,"From @keewis comment in #4138 > I just noticed that the rackcdn.org repository doesn't have matplotlib>=3.2.0, so since about late February we don't test against matplotlib upstream anymore.","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/4145/reactions"", ""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,completed,13221727,issue