id,node_id,number,title,user,state,locked,assignee,milestone,comments,created_at,updated_at,closed_at,author_association,active_lock_reason,draft,pull_request,body,reactions,performed_via_github_app,state_reason,repo,type 540451721,MDExOlB1bGxSZXF1ZXN0MzU1MjU4NjMy,3646,[WIP] GroupBy plotting,2448579,open,0,,,7,2019-12-19T17:26:39Z,2022-06-09T14:50:17Z,,MEMBER,,1,pydata/xarray/pulls/3646," - [x] Tests added - [x] Passes `black . && mypy . && flake8` - [ ] Fully documented, including `whats-new.rst` for all changes and `api.rst` for new API This adds plotting methods to GroupBy objects so that it's easy to plot each group as a facet. I'm finding this super helpful in my current research project. It's pretty self-contained, mostly just adding `map_groupby*` methods to `FacetGrid`. But that's because I make `GroupBy` mimic the underlying `DataArray` by adding `coords`, `attrs` and `__getitem__`. This still needs more tests but I would like feedback on the feature and the implementation. ## Example ``` python import numpy as np import xarray as xr time = np.arange(80) da = xr.DataArray(5 * np.sin(2*np.pi*time/10), coords={""time"": time}, dims=""time"") da[""period""] = da.time.where((time % 10) == 0).ffill(""time"")/10 da.plot() ``` ![image](https://user-images.githubusercontent.com/2448579/71194665-49f45c00-2284-11ea-96e5-9a5daec1b3a9.png) ``` python da.groupby(""period"").plot(col=""period"", col_wrap=4) ``` ![image](https://user-images.githubusercontent.com/2448579/107123905-a1290780-685d-11eb-9bae-831a7513aaed.png) ``` python da = da.expand_dims(y=10) da.groupby(""period"").plot(col=""period"", col_wrap=4, sharex=False, sharey=True, robust=True) ``` ![image](https://user-images.githubusercontent.com/2448579/71194716-5c6e9580-2284-11ea-832a-c4e7d9296390.png) ","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/3646/reactions"", ""total_count"": 3, ""+1"": 2, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 1, ""rocket"": 0, ""eyes"": 0}",,,13221727,pull