id,node_id,number,title,user,state,locked,assignee,milestone,comments,created_at,updated_at,closed_at,author_association,active_lock_reason,draft,pull_request,body,reactions,performed_via_github_app,state_reason,repo,type 1710752209,PR_kwDOAMm_X85QjIMH,7844,Improve to_dask_dataframe performance,14371165,closed,0,,,1,2023-05-15T20:08:24Z,2023-05-25T20:08:54Z,2023-05-25T20:08:54Z,MEMBER,,0,pydata/xarray/pulls/7844,"* ds.chunks loops all the variables, do it once. * Faster to create a meta dataframe once than letting dask guess 2000 times. ","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/7844/reactions"", ""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,,13221727,pull 1718427036,PR_kwDOAMm_X85Q88zP,7857,Avoid explicit loop when updating OrderedSet,14371165,closed,0,,,0,2023-05-21T09:06:58Z,2023-05-25T20:08:35Z,2023-05-25T20:08:34Z,MEMBER,,0,pydata/xarray/pulls/7857,"Following recommendation from: https://github.com/pydata/xarray/pull/7824#discussion_r1196114696 ```python # main: a = tuple(f""dim_{i}"" for i in range(500)) %timeit OrderedSet(a) 46 µs ± 2.26 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) # This PR: a = tuple(f""dim_{i}"" for i in range(500)) %timeit OrderedSet(a) 28.9 µs ± 476 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) ``` ","{""url"": ""https://api.github.com/repos/pydata/xarray/issues/7857/reactions"", ""total_count"": 0, ""+1"": 0, ""-1"": 0, ""laugh"": 0, ""hooray"": 0, ""confused"": 0, ""heart"": 0, ""rocket"": 0, ""eyes"": 0}",,,13221727,pull