issue_comments
10 rows where user = 7933853 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, reactions, created_at (date), updated_at (date)
user 1
- lvankampenhout · 10 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
702348129 | https://github.com/pydata/xarray/issues/3781#issuecomment-702348129 | https://api.github.com/repos/pydata/xarray/issues/3781 | MDEyOklzc3VlQ29tbWVudDcwMjM0ODEyOQ== | lvankampenhout 7933853 | 2020-10-01T19:24:48Z | 2020-10-01T20:00:27Z | NONE | I think I ran into a similar problem when combining dask-chunked DataSets (originating from MCVE Code Sample ```python import xarray as xr from multiprocessing import Pool import os if (False): """ Load data without using dask """ ds = xr.open_dataset("http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis/surface/air.sig995.1960.nc") else: """ Load data using dask """ ds = xr.open_dataset("http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis/surface/air.sig995.1960.nc", chunks={}) print(ds.nbytes / 1e6, 'MB') print('chunks', ds.air.chunks) # chunks is empty without dask outdir = '/glade/scratch/lvank' # change this to some temporary directory on your system def do_work(n): print(n) ds.to_netcdf(os.path.join(outdir, f'{n}.nc')) tasks = range(10) with Pool(processes=2) as pool: pool.map(do_work, tasks) print('done') ``` Expected Output
The NetCDF copies in Problem Description
In the case with Dask, when the if-statement evaluates to Output of xr.show_versions()
INSTALLED VERSIONS
------------------
commit: None
python: 3.8.5 (default, Sep 4 2020, 07:30:14)
[GCC 7.3.0]
python-bits: 64
OS: Linux
OS-release: 3.10.0-1127.13.1.el7.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: en_US.UTF-8
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
libhdf5: 1.10.4
libnetcdf: 4.7.3
xarray: 0.16.1
pandas: 1.1.1
numpy: 1.19.1
scipy: 1.5.2
netCDF4: 1.5.3
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: 1.2.1
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: None
dask: 2.27.0
distributed: 2.28.0
matplotlib: 3.3.1
cartopy: None
seaborn: None
numbagg: None
pint: None
setuptools: 49.6.0.post20200925
pip: 20.2.2
conda: None
pytest: None
IPython: 7.18.1
sphinx: None
```
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
to_netcdf() doesn't work with multiprocessing scheduler 567678992 | |
573042086 | https://github.com/pydata/xarray/issues/3681#issuecomment-573042086 | https://api.github.com/repos/pydata/xarray/issues/3681 | MDEyOklzc3VlQ29tbWVudDU3MzA0MjA4Ng== | lvankampenhout 7933853 | 2020-01-10T13:48:09Z | 2020-01-10T13:49:24Z | NONE | Unfortunately,
```
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-90-462267a327eb> in <module>
----> 1 ds6 = xr.concat((ds1,ds2), dim='time',join='override')
~/anaconda3/lib/python3.6/site-packages/xarray/core/concat.py in concat(objs, dim, data_vars, coords, compat, positions, fill_value, join)
131 "objects, got %s" % type(first_obj)
132 )
--> 133 return f(objs, dim, data_vars, coords, compat, positions, fill_value, join)
134
135
~/anaconda3/lib/python3.6/site-packages/xarray/core/concat.py in _dataset_concat(datasets, dim, data_vars, coords, compat, positions, fill_value, join)
299 datasets = [ds.copy() for ds in datasets]
300 datasets = align(
--> 301 *datasets, join=join, copy=False, exclude=[dim], fill_value=fill_value
302 )
303
~/anaconda3/lib/python3.6/site-packages/xarray/core/alignment.py in align(join, copy, indexes, exclude, fill_value, *objects)
269
270 if join == "override":
--> 271 objects = _override_indexes(objects, all_indexes, exclude)
272
273 # We don't reindex over dimensions with all equal indexes for two reasons:
~/anaconda3/lib/python3.6/site-packages/xarray/core/alignment.py in _override_indexes(objects, all_indexes, exclude)
53 for dim in obj.dims:
54 if dim not in exclude:
---> 55 new_indexes[dim] = all_indexes[dim][0]
56 objects[idx + 1] = obj._overwrite_indexes(new_indexes)
57
IndexError: list index out of range
```
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
concat result not correct for particular dataset 548029687 | |
573040403 | https://github.com/pydata/xarray/issues/3681#issuecomment-573040403 | https://api.github.com/repos/pydata/xarray/issues/3681 | MDEyOklzc3VlQ29tbWVudDU3MzA0MDQwMw== | lvankampenhout 7933853 | 2020-01-10T13:43:41Z | 2020-01-10T13:44:15Z | NONE | Thanks Tom. This indeed gives a dataset with the correct dimensions but there is missing data
I've also tried |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
concat result not correct for particular dataset 548029687 | |
573026476 | https://github.com/pydata/xarray/issues/3681#issuecomment-573026476 | https://api.github.com/repos/pydata/xarray/issues/3681 | MDEyOklzc3VlQ29tbWVudDU3MzAyNjQ3Ng== | lvankampenhout 7933853 | 2020-01-10T13:01:46Z | 2020-01-10T13:01:46Z | NONE | good point, How to use |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
concat result not correct for particular dataset 548029687 | |
488279851 | https://github.com/pydata/xarray/issues/2932#issuecomment-488279851 | https://api.github.com/repos/pydata/xarray/issues/2932 | MDEyOklzc3VlQ29tbWVudDQ4ODI3OTg1MQ== | lvankampenhout 7933853 | 2019-05-01T13:19:40Z | 2019-05-01T13:19:40Z | NONE | Thanks, I've implemented your suggestion as a workaround, but it fails with the following error:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Facetgrid: colors beyond range (extend) not saturated 438694589 | |
470546895 | https://github.com/pydata/xarray/issues/1005#issuecomment-470546895 | https://api.github.com/repos/pydata/xarray/issues/1005 | MDEyOklzc3VlQ29tbWVudDQ3MDU0Njg5NQ== | lvankampenhout 7933853 | 2019-03-07T14:29:53Z | 2019-03-07T14:29:53Z | NONE | Stephan, thanks a lot for your code snippet from December, this is an elegant solution to the problem. One minor correction though, because I found that it fails to infer the period if none is given. The divide should be a multiplication I believe, i.e. ```python import xarray import numpy as np def add_cyclic_point(xarray_obj, dim, period=None): if period is None: period = xarray_obj.sizes[dim] * xarray_obj.coords[dim][:2].diff(dim).item() first_point = xarray_obj.isel({dim: slice(1)}) first_point.coords[dim] = first_point.coords[dim]+period return xarray.concat([xarray_obj, first_point], dim=dim) ``` |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
How to efficiently use DataArrays with Cartopy's add_cyclic_point utility? 177484162 | |
447034484 | https://github.com/pydata/xarray/issues/1005#issuecomment-447034484 | https://api.github.com/repos/pydata/xarray/issues/1005 | MDEyOklzc3VlQ29tbWVudDQ0NzAzNDQ4NA== | lvankampenhout 7933853 | 2018-12-13T16:34:13Z | 2018-12-13T16:34:29Z | NONE | Any update on this issue? It would be great if Just for other peoples reference, I now have this workaround, creating |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
How to efficiently use DataArrays with Cartopy's add_cyclic_point utility? 177484162 | |
392682701 | https://github.com/pydata/xarray/issues/1270#issuecomment-392682701 | https://api.github.com/repos/pydata/xarray/issues/1270 | MDEyOklzc3VlQ29tbWVudDM5MjY4MjcwMQ== | lvankampenhout 7933853 | 2018-05-29T07:41:53Z | 2018-05-29T07:41:53Z | NONE | thanks for your elaborate response @spencerkclark
Yes, the main limitation being the limited range of years (~584) whereas my dataset spans 1800 years. Note that in glaciology, which deals with ice sheet responses over multiple millennia, this is considered a short period. I elaborated a bit more on my problem in this issue which is in a unofficial repo, I realized too late. Anyway, your code using cftime solves my problem 😄 indeed resampling to |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
BUG: Resample on PeriodIndex not working? 207862981 | |
390892554 | https://github.com/pydata/xarray/issues/1270#issuecomment-390892554 | https://api.github.com/repos/pydata/xarray/issues/1270 | MDEyOklzc3VlQ29tbWVudDM5MDg5MjU1NA== | lvankampenhout 7933853 | 2018-05-22T07:36:40Z | 2018-05-22T07:36:40Z | NONE | +1 to this issue. I'm struggling big time with an 1800-year climate model dataset that I need to resample in order to make different annual means (June-May). |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
BUG: Resample on PeriodIndex not working? 207862981 | |
376810608 | https://github.com/pydata/xarray/issues/1008#issuecomment-376810608 | https://api.github.com/repos/pydata/xarray/issues/1008 | MDEyOklzc3VlQ29tbWVudDM3NjgxMDYwOA== | lvankampenhout 7933853 | 2018-03-28T08:49:24Z | 2018-03-28T08:49:49Z | NONE | I stumbled across the same problem in xarray 0.9.1 and updating to 0.10.2 solved it. Perhaps this issue may be closed? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
How to avoid the auto convert variable dtype from float32 to float64 when read netCDF file use open_dataset? 177754433 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue 6