issue_comments
3 rows where user = 7442202 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
265422603 | https://github.com/pydata/xarray/pull/1148#issuecomment-265422603 | https://api.github.com/repos/pydata/xarray/issues/1148 | MDEyOklzc3VlQ29tbWVudDI2NTQyMjYwMw== | hoonhout 7442202 | 2016-12-07T11:21:27Z | 2016-12-07T11:21:27Z | CONTRIBUTOR | I think this request is now ready to be pulled, right? Otherwise I keep merging these what's new lines :-) |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Expose options for axis sharing between subplots 192816291 | |
264471623 | https://github.com/pydata/xarray/pull/1148#issuecomment-264471623 | https://api.github.com/repos/pydata/xarray/issues/1148 | MDEyOklzc3VlQ29tbWVudDI2NDQ3MTYyMw== | hoonhout 7442202 | 2016-12-02T14:53:43Z | 2016-12-02T14:53:43Z | CONTRIBUTOR | Sure, I'll make my example into a test. BTW, I would recommend to keep the default True. Seaborn's default is indeed shared axes. This makes sense as a FacetGrid is intended to visualize single-source data. MPL's default is indeed not to share axes. This also makes sense as MPL doesn't have any constraints on the data source. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Expose options for axis sharing between subplots 192816291 | |
264455218 | https://github.com/pydata/xarray/pull/1148#issuecomment-264455218 | https://api.github.com/repos/pydata/xarray/issues/1148 | MDEyOklzc3VlQ29tbWVudDI2NDQ1NTIxOA== | hoonhout 7442202 | 2016-12-02T13:36:39Z | 2016-12-02T13:40:14Z | CONTRIBUTOR | Here is an example of a random polar plot that doesn't work without the suggested modification: ```python import xarray import numpy as np from collections import OrderedDict from datetime import datetime define dimensionsdims = OrderedDict([ ('time', [datetime(2016,12,1,1,0,0), datetime(2016,12,1,1,20,0)]), ('location', np.arange(3)), ('frequency', np.linspace(.1, .5, 20)), ('direction', np.linspace(0., 2.*np.pi, 50)), ]) create random dataE = np.random.rand(*[len(x) for x in dims.itervalues()]) construct DataArraydarray = xarray.DataArray(E, dims=dims, coords=dims) plot datadarray.plot.pcolormesh(col='time', row='location', subplot_kws=dict(projection='polar'), sharex=False, sharey=False) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Expose options for axis sharing between subplots 192816291 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1