home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

4 rows where user = 5929935 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: issue_url, created_at (date), updated_at (date)

issue 2

  • open_mfdataset too many files 3
  • Feature request: Compute cross-correlation (similar to pd.Series.corr()) of gridded data 1

user 1

  • sebhahn · 4 ✖

author_association 1

  • NONE 4
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
349670336 https://github.com/pydata/xarray/issues/1115#issuecomment-349670336 https://api.github.com/repos/pydata/xarray/issues/1115 MDEyOklzc3VlQ29tbWVudDM0OTY3MDMzNg== sebhahn 5929935 2017-12-06T15:17:40Z 2017-12-06T15:17:40Z NONE

@hrishikeshac I was just looking for a function doing a regression between two datasets (x, y, time), so thanks for your function! However, I'm still wondering whether there is a much faster C (or Cython) implementation doing these kind of things?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Feature request: Compute cross-correlation (similar to pd.Series.corr()) of gridded data 188996339
347165242 https://github.com/pydata/xarray/issues/463#issuecomment-347165242 https://api.github.com/repos/pydata/xarray/issues/463 MDEyOklzc3VlQ29tbWVudDM0NzE2NTI0Mg== sebhahn 5929935 2017-11-27T12:17:17Z 2017-11-27T12:17:17Z NONE

Thanks, I'll test it!

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  open_mfdataset too many files 94328498
347140117 https://github.com/pydata/xarray/issues/463#issuecomment-347140117 https://api.github.com/repos/pydata/xarray/issues/463 MDEyOklzc3VlQ29tbWVudDM0NzE0MDExNw== sebhahn 5929935 2017-11-27T10:26:56Z 2017-11-27T10:26:56Z NONE

Ok, I found my problem. I had to increase ulimit -n

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  open_mfdataset too many files 94328498
347126256 https://github.com/pydata/xarray/issues/463#issuecomment-347126256 https://api.github.com/repos/pydata/xarray/issues/463 MDEyOklzc3VlQ29tbWVudDM0NzEyNjI1Ng== sebhahn 5929935 2017-11-27T09:33:29Z 2017-11-27T09:33:29Z NONE

@shoyer I just ran into this issue again (with 8000 files, each 50 kB), I'm using xarray 0.9.6 and work on some performance tests. Is there any upper limit of number of files?

File "/home/shahn/.pyenv/versions/warp_conda/envs/pyraster_env/lib/python2.7/site-packages/xarray/backends/api.py", line 505, in open_mfdataset File "/home/shahn/.pyenv/versions/warp_conda/envs/pyraster_env/lib/python2.7/site-packages/xarray/backends/api.py", line 282, in open_dataset File "/home/shahn/.pyenv/versions/warp_conda/envs/pyraster_env/lib/python2.7/site-packages/xarray/backends/netCDF4_.py", line 210, in __init__ File "/home/shahn/.pyenv/versions/warp_conda/envs/pyraster_env/lib/python2.7/site-packages/xarray/backends/netCDF4_.py", line 185, in _open_netcdf4_group File "netCDF4/_netCDF4.pyx", line 1811, in netCDF4._netCDF4.Dataset.__init__ (netCDF4/_netCDF4.c:13231) IOError: Too many open files

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  open_mfdataset too many files 94328498

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 27.391ms · About: xarray-datasette