issue_comments
9 rows where user = 38346144 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, created_at (date), updated_at (date)
user 1
- weipeng1999 · 9 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1287593498 | https://github.com/pydata/xarray/issues/7193#issuecomment-1287593498 | https://api.github.com/repos/pydata/xarray/issues/7193 | IC_kwDOAMm_X85Mvx4a | weipeng1999 38346144 | 2022-10-22T02:51:50Z | 2022-10-22T09:51:43Z | NONE |
Can I just copy from the doc and use comment to mention the change ``` python In [100]: da = xr.DataArray( ....: np.random.rand(4, 2), ....: [ ....: ("time", pd.date_range("2000-01-01", periods=4)), ....: ("space", ["IA", "IL"]), # do not have the "IN" label ....: ], ....: ) In [101]: times = xr.DataArray( ....: pd.to_datetime(["2000-01-03", "2000-01-02", "2000-01-01"]), dims="new_time" ....: ) In [102]: # use .reindex instead of .sel ....: # and give the parameter : "fill_value" ....: da.reindex(space=xr.DataArray(["IA", "IL", "IN"], dims=["new_time"]), time=times, fill_value=np.nan) Out[102]: <xarray.DataArray (new_time: 3)> array([0.92, 0.34, NaN]) # so fill the missing value by np.nan Coordinates: time (new_time) datetime64[ns] 2000-01-03 2000-01-02 2000-01-01 space (new_time) <U2 'IA' 'IL' 'IN' * new_time (new_time) datetime64[ns] 2000-01-03 2000-01-02 2000-01-01 ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Support .reindex with DataArrays and Dataset as indexers 1417641930 | |
1287594393 | https://github.com/pydata/xarray/issues/7193#issuecomment-1287594393 | https://api.github.com/repos/pydata/xarray/issues/7193 | IC_kwDOAMm_X85MvyGZ | weipeng1999 38346144 | 2022-10-22T02:57:50Z | 2022-10-22T02:57:50Z | NONE | So we can guarantee that:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Support .reindex with DataArrays and Dataset as indexers 1417641930 | |
949485684 | https://github.com/pydata/xarray/issues/1603#issuecomment-949485684 | https://api.github.com/repos/pydata/xarray/issues/1603 | IC_kwDOAMm_X844mAB0 | weipeng1999 38346144 | 2021-10-22T10:15:39Z | 2021-10-22T10:15:39Z | NONE | So I think maintain the origin dims may do less broken on current code. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Explicit indexes in xarray's data-model (Future of MultiIndex) 262642978 | |
949484507 | https://github.com/pydata/xarray/issues/1603#issuecomment-949484507 | https://api.github.com/repos/pydata/xarray/issues/1603 | IC_kwDOAMm_X844l_vb | weipeng1999 38346144 | 2021-10-22T10:14:01Z | 2021-10-22T10:14:01Z | NONE |
well, both "contain the origin dims" or just "generate another one" have its benefit. if we contain origin dims, we can ensure that: - less difference between 1d coordinate and multi dims ones, both can run like S1.sel(C1=["a", "e", "h"]) S4.sel(C2=["a", "e", "h"]) and return a new data set with origin dims ( that's why I highly not recommended the implicit one ) - return a new data set have original dims which means if you change C1 to C2, and the rest code have S_res.sel(x=[1,2,3]) still work. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Explicit indexes in xarray's data-model (Future of MultiIndex) 262642978 | |
949423480 | https://github.com/pydata/xarray/issues/1603#issuecomment-949423480 | https://api.github.com/repos/pydata/xarray/issues/1603 | IC_kwDOAMm_X844lw14 | weipeng1999 38346144 | 2021-10-22T08:56:38Z | 2021-10-22T09:15:17Z | NONE | well, here are my ideas on how to define coordinates with multi dims.(because of github's bug, the characters of 1st image are white, I can not fix it)
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Explicit indexes in xarray's data-model (Future of MultiIndex) 262642978 | |
949401881 | https://github.com/pydata/xarray/issues/1603#issuecomment-949401881 | https://api.github.com/repos/pydata/xarray/issues/1603 | IC_kwDOAMm_X844lrkZ | weipeng1999 38346144 | 2021-10-22T08:25:54Z | 2021-10-22T08:25:54Z | NONE |
thank you for figuring out the wrong things what I done. Well, it' is hard to explain the idea because it is a bit complicated, the last two picture is wrong and make misunderstanding, here are two images explain what I actuarily mean:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Explicit indexes in xarray's data-model (Future of MultiIndex) 262642978 | |
947480352 | https://github.com/pydata/xarray/issues/1603#issuecomment-947480352 | https://api.github.com/repos/pydata/xarray/issues/1603 | IC_kwDOAMm_X844eWcg | weipeng1999 38346144 | 2021-10-20T09:15:41Z | 2021-10-20T09:15:41Z | NONE |
Try to explain my idea, I make a PPT.
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Explicit indexes in xarray's data-model (Future of MultiIndex) 262642978 | |
946337314 | https://github.com/pydata/xarray/issues/1603#issuecomment-946337314 | https://api.github.com/repos/pydata/xarray/issues/1603 | IC_kwDOAMm_X844Z_Yi | weipeng1999 38346144 | 2021-10-19T03:32:13Z | 2021-10-19T03:33:54Z | NONE | Well, maybe we can consider the coordinates in a more generic way. Let us define coordinate an array in data set cause co-indexed when we index its data set. It means that:
Use dims to determined the way how other array of the data set will be co-indexed.
Some compatibility issues:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Explicit indexes in xarray's data-model (Future of MultiIndex) 262642978 | |
533563714 | https://github.com/pydata/xarray/issues/3322#issuecomment-533563714 | https://api.github.com/repos/pydata/xarray/issues/3322 | MDEyOklzc3VlQ29tbWVudDUzMzU2MzcxNA== | weipeng1999 38346144 | 2019-09-20T13:54:40Z | 2019-09-20T14:02:46Z | NONE |
I realize that I am a totally green finger here are my trial implement I think I have long way to make it commitable |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Linear algebra support 495799492 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue 3