issue_comments
10 rows where user = 34062862 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, reactions, created_at (date), updated_at (date)
user 1
- RubendeBruin · 10 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
981408883 | https://github.com/pydata/xarray/pull/6003#issuecomment-981408883 | https://api.github.com/repos/pydata/xarray/issues/6003 | IC_kwDOAMm_X846fxxz | RubendeBruin 34062862 | 2021-11-29T08:49:02Z | 2021-11-29T08:49:02Z | NONE | "does that work on your end?" yes it does. Will remove the xfail and then we can merge once https://github.com/pydata/bottleneck/pull/382 is merged. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Added test for issue #6002 (currently fails) 1057355557 | |
979285475 | https://github.com/pydata/xarray/pull/6003#issuecomment-979285475 | https://api.github.com/repos/pydata/xarray/issues/6003 | IC_kwDOAMm_X846XrXj | RubendeBruin 34062862 | 2021-11-25T15:03:17Z | 2021-11-25T15:03:17Z | NONE | I've added xfail , thanks for the link. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Added test for issue #6002 (currently fails) 1057355557 | |
979146287 | https://github.com/pydata/xarray/pull/6003#issuecomment-979146287 | https://api.github.com/repos/pydata/xarray/issues/6003 | IC_kwDOAMm_X846XJYv | RubendeBruin 34062862 | 2021-11-25T12:01:38Z | 2021-11-25T12:01:38Z | NONE | Hi @max-sixty , what is a Also, the issue turned out to be bottleneck-bug , ref: https://github.com/pydata/bottleneck/issues/393#issuecomment-978017397 (fix available) |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Added test for issue #6002 (currently fails) 1057355557 | |
974066877 | https://github.com/pydata/xarray/issues/6002#issuecomment-974066877 | https://api.github.com/repos/pydata/xarray/issues/6002 | IC_kwDOAMm_X846DxS9 | RubendeBruin 34062862 | 2021-11-19T13:20:28Z | 2021-11-19T13:20:28Z | NONE | Ok, then it is clearly a bottleneck/numpy issue. I will raise it there and close it here. Thanks! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Abnormal process termination when using bottleneck function on xarray data after transposing and having a dimension with length 1 1057335460 | |
973937765 | https://github.com/pydata/xarray/issues/6002#issuecomment-973937765 | https://api.github.com/repos/pydata/xarray/issues/6002 | IC_kwDOAMm_X846DRxl | RubendeBruin 34062862 | 2021-11-19T10:17:00Z | 2021-11-19T10:17:00Z | NONE | I can reproduce it with calling bn.nanmax directly, but I can not reproduce it without the xarray.transpose() function.
I suspect that the xarray.transpose function does something with the data-structure (lazy reshuffling of dimensions?) that triggers the fault in bottleneck. Full code: ```python from collections import OrderedDict import numpy as np import xarray as xr xr.show_versions() n_time = 1 # 1 : Fails, 2 : everything is fine from xarray.core.options import OPTIONS OPTIONS["use_bottleneck"] = True # Set to False for work-around Build some datasetdirs = np.linspace(0,360, num=121) freqs = np.linspace(0,4,num=192) spec_data = np.random.random(size=(n_time,192,121)) dims = ('time', 'freq', 'dir') coords = OrderedDict() coords['time'] = range(n_time) coords['freq'] = freqs coords['dir'] = dirs xdata = xr.DataArray( data=spec_data, coords=coords, dims=dims, name='Spec name', ).to_dataset() xdata = xdata.transpose(..., "freq") import bottleneck as bn np_data = xdata['Spec name'].data new_data = np_data.copy() bn.nanmax(new_data) # works bn.nanmax(np_data) # Segfault print('direct bn call done') ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Abnormal process termination when using bottleneck function on xarray data after transposing and having a dimension with length 1 1057335460 | |
973159855 | https://github.com/pydata/xarray/issues/6002#issuecomment-973159855 | https://api.github.com/repos/pydata/xarray/issues/6002 | IC_kwDOAMm_X846AT2v | RubendeBruin 34062862 | 2021-11-18T18:51:50Z | 2021-11-18T18:51:50Z | NONE | tests on another machine (also win64) with the same result. Running under WSL/Ubuntu results in a Segmentation Fault |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Abnormal process termination when using bottleneck function on xarray data after transposing and having a dimension with length 1 1057335460 | |
972680945 | https://github.com/pydata/xarray/issues/6001#issuecomment-972680945 | https://api.github.com/repos/pydata/xarray/issues/6001 | IC_kwDOAMm_X845-e7x | RubendeBruin 34062862 | 2021-11-18T09:21:18Z | 2021-11-18T09:21:18Z | NONE | Gets too messy - will clean up and re-open |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Crash when calling max() after transposing a dataset in combination with numba 1057082683 | |
972678034 | https://github.com/pydata/xarray/issues/6001#issuecomment-972678034 | https://api.github.com/repos/pydata/xarray/issues/6001 | IC_kwDOAMm_X845-eOS | RubendeBruin 34062862 | 2021-11-18T09:17:49Z | 2021-11-18T09:17:49Z | NONE | Minimum conda environment to reproduce:
Name Version Build Channelblas 1.0 mkl bottleneck 1.3.2 py38h2a96729_1 ca-certificates 2021.10.26 haa95532_2 importlib-metadata 4.8.2 py38haa244fe_0 conda-forge importlib_metadata 4.8.2 hd8ed1ab_0 conda-forge intel-openmp 2021.4.0 haa95532_3556 libblas 3.9.0 12_win64_mkl conda-forge libcblas 3.9.0 12_win64_mkl conda-forge liblapack 3.9.0 12_win64_mkl conda-forge llvmlite 0.35.0 py38h34b8924_4 mkl 2021.4.0 h0e2418a_729 conda-forge mkl-service 2.4.0 py38h2bbff1b_0 numba 0.52.0 py38hf11a4ad_0 numexpr 2.7.3 py38hb80d3ca_1 numpy 1.21.4 py38h089cfbf_0 conda-forge openssl 1.1.1l h2bbff1b_0 pandas 1.3.4 py38h6214cd6_0 pip 21.3.1 pyhd8ed1ab_0 conda-forge python 3.8.12 h6244533_0 python-dateutil 2.8.2 pyhd3eb1b0_0 python_abi 3.8 2_cp38 conda-forge pytz 2021.3 pyhd3eb1b0_0 setuptools 59.1.1 py38haa244fe_0 conda-forge six 1.16.0 pyhd3eb1b0_0 sqlite 3.36.0 h2bbff1b_0 tbb 2021.4.0 h59b6b97_0 typing_extensions 4.0.0 pyha770c72_0 conda-forge ucrt 10.0.20348.0 h57928b3_0 conda-forge vc 14.2 h21ff451_1 vs2015_runtime 14.29.30037 h902a5da_5 conda-forge wheel 0.37.0 pyhd3eb1b0_1 xarray 0.20.1 pyhd8ed1ab_0 conda-forge zipp 3.6.0 pyhd3eb1b0_0 zlib 1.2.11 h62dcd97_4 ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Crash when calling max() after transposing a dataset in combination with numba 1057082683 | |
972665006 | https://github.com/pydata/xarray/issues/6001#issuecomment-972665006 | https://api.github.com/repos/pydata/xarray/issues/6001 | IC_kwDOAMm_X845-bCu | RubendeBruin 34062862 | 2021-11-18T09:02:05Z | 2021-11-18T09:02:05Z | NONE | So not sure if I should post the issue here on with numba |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Crash when calling max() after transposing a dataset in combination with numba 1057082683 | |
575520252 | https://github.com/pydata/xarray/issues/3622#issuecomment-575520252 | https://api.github.com/repos/pydata/xarray/issues/3622 | MDEyOklzc3VlQ29tbWVudDU3NTUyMDI1Mg== | RubendeBruin 34062862 | 2020-01-17T08:06:04Z | 2020-01-17T08:06:04Z | NONE | Thanks for the link to the tutorial! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
custom interpolation 537936090 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue 4