issue_comments
8 rows where user = 33153877 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, created_at (date), updated_at (date)
user 1
- huaracheguarache · 8 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1521731294 | https://github.com/pydata/xarray/issues/7758#issuecomment-1521731294 | https://api.github.com/repos/pydata/xarray/issues/7758 | IC_kwDOAMm_X85as8be | huaracheguarache 33153877 | 2023-04-25T12:46:52Z | 2023-04-25T12:46:52Z | NONE | @dcherian Interesting! There should ideally be a way to set that because 32-64 seconds is way to long to wait before timing out in my opinion. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Provide a way to specify how long open_dataset tries to fetch data before timing out 1668898601 | |
1509899467 | https://github.com/pydata/xarray/issues/7758#issuecomment-1509899467 | https://api.github.com/repos/pydata/xarray/issues/7758 | IC_kwDOAMm_X85Z_zzL | huaracheguarache 33153877 | 2023-04-15T17:21:07Z | 2023-04-15T17:21:07Z | NONE | Ah, got it! In that case it's a real server since I don't mount anything. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Provide a way to specify how long open_dataset tries to fetch data before timing out 1668898601 | |
1509633511 | https://github.com/pydata/xarray/issues/7758#issuecomment-1509633511 | https://api.github.com/repos/pydata/xarray/issues/7758 | IC_kwDOAMm_X85Z-y3n | huaracheguarache 33153877 | 2023-04-15T08:21:16Z | 2023-04-15T15:33:44Z | NONE | I'm using netCDF4. I'm not sure what the difference between a real server and a remote file system is, but I use OPeNDAP to fetch the data I need. One example is the following data file (the first link under the access subheader): https://thredds.met.no/thredds/catalog/osisaf/met.no/ice/index/v2p1/nh/catalog.html?dataset=osisaf/met.no/ice/index/v2p1/nh/osisaf_nh_sie_monthly.nc |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Provide a way to specify how long open_dataset tries to fetch data before timing out 1668898601 | |
1419511942 | https://github.com/pydata/xarray/issues/7504#issuecomment-1419511942 | https://api.github.com/repos/pydata/xarray/issues/7504 | IC_kwDOAMm_X85UnAiG | huaracheguarache 33153877 | 2023-02-06T17:57:56Z | 2023-02-06T17:57:56Z | NONE | Ok, great! Thanks for the tip. On Mon, Feb 6, 2023 at 13:51, Spencer Clark @.***> wrote:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Selecting dates with .sel() doesn't work when time index is in cftime 1572434353 | |
977165503 | https://github.com/pydata/xarray/issues/4061#issuecomment-977165503 | https://api.github.com/repos/pydata/xarray/issues/4061 | IC_kwDOAMm_X846Ply_ | huaracheguarache 33153877 | 2021-11-23T21:01:17Z | 2021-11-23T21:01:17Z | NONE | I also have an issue where xarray doesn't produce the correct plot when normalizing with BoundaryNorm: ```python import xarray as xr import matplotlib.pyplot as plt import matplotlib.colors as colors from cmcrameri import cm airtemps = xr.tutorial.open_dataset("air_temperature") Convert to Celsius.air = airtemps.air - 273.15 air.attrs = airtemps.air.attrs air.attrs["units"] = "deg C" Select a timestep.air2d = air.isel(time=500) Plotting discrete bounds with matplotlib works fine.bounds = [x for x in range(-30, 31, 10)] norm = colors.BoundaryNorm(boundaries=bounds, extend='both', ncolors=cm.vik.N) fig, ax = plt.subplots() cs = ax.pcolormesh(air2d.lon, air2d.lat, air2d, cmap=cm.vik, norm=norm) fig.colorbar(cs) plt.show() Plotting with xarray doesn't work.fig, ax = plt.subplots()
air2d.plot.pcolormesh(ax=ax, norm=norm)
plt.show()
```
First one is from matplotlib:
Second one is from xarray:
I also get the following traceback after running the script:
Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.10.0 | packaged by conda-forge | (default, Nov 20 2021, 02:25:18) [GCC 9.4.0] python-bits: 64 OS: Linux OS-release: 5.14.18-300.fc35.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: ('en_GB', 'UTF-8') libhdf5: 1.12.1 libnetcdf: 4.8.1 xarray: 0.20.1 pandas: 1.3.4 numpy: 1.21.4 scipy: 1.7.2 netCDF4: 1.5.8 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.5.1.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: None distributed: None matplotlib: 3.5.0 cartopy: 0.20.1 seaborn: None numbagg: None fsspec: None cupy: None pint: None sparse: None setuptools: 59.2.0 pip: 21.3.1 conda: None pytest: None IPython: 7.29.0 sphinx: None |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Colormap Normalisation Giving Unexpected/Incorrect Output 618141254 | |
974505817 | https://github.com/pydata/xarray/issues/5987#issuecomment-974505817 | https://api.github.com/repos/pydata/xarray/issues/5987 | IC_kwDOAMm_X846FcdZ | huaracheguarache 33153877 | 2021-11-19T22:10:48Z | 2021-11-19T22:10:48Z | NONE | @mathause Sorry for the late reply! I've been very busy lately, but yes, please move it to a discussion. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Plotting interpolated data causes artefacts 1052918815 | |
968380475 | https://github.com/pydata/xarray/issues/5987#issuecomment-968380475 | https://api.github.com/repos/pydata/xarray/issues/5987 | IC_kwDOAMm_X845uFA7 | huaracheguarache 33153877 | 2021-11-14T22:56:32Z | 2021-11-14T22:56:44Z | NONE | @spencerkclark Thanks for the suggestion! I haven't made any serious tests yet, but my initial tests worked fine =) |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Plotting interpolated data causes artefacts 1052918815 | |
968291159 | https://github.com/pydata/xarray/issues/5987#issuecomment-968291159 | https://api.github.com/repos/pydata/xarray/issues/5987 | IC_kwDOAMm_X845tvNX | huaracheguarache 33153877 | 2021-11-14T13:28:20Z | 2021-11-14T13:28:20Z | NONE | I decided to also look at what happens when you plot with contourf. In this case both the plot of the original data and the interpolated data have a white line at the central longitude, but the interpolated data also has white lines at the poles: Original MPI-ESM Interpolated MPI-ESM Here's the code that produced the plots: ```python import xarray as xr import matplotlib.pyplot as plt import cartopy.crs as ccrs cesm2_waccm = xr.open_dataset('pr_day_CESM2-WACCM_ssp245_r2i1p1f1_gn_20750101-20841231.nc') mpi = xr.open_dataset('pr_day_MPI-ESM1-2-LR_ssp245_r1i1p1f1_gn_20750101-20941231.nc') cesm2_waccm_subset = cesm2_waccm.sel(time=slice('2075-01-01', '2075-12-31')).mean(dim='time') mpi_subset = mpi.sel(time=slice('2075-01-01', '2075-12-31')).mean(dim='time') map_proj = ccrs.PlateCarree() Now this also produces a white line.plot = mpi_subset.pr.plot.contourf(subplot_kws={'projection': map_proj}) plot.axes.coastlines() plt.show() mpi_interp = mpi_subset.interp(lat=cesm2_waccm_subset['lat'], lon=cesm2_waccm_subset['lon']) Has a white line at the central longitude.plot = mpi_interp.pr.plot.contourf(subplot_kws={'projection': map_proj}) plot.axes.coastlines() plt.show() ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Plotting interpolated data causes artefacts 1052918815 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue 4