issue_comments
8 rows where user = 33062222 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, reactions, created_at (date), updated_at (date)
user 1
- avatar101 · 8 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
590115864 | https://github.com/pydata/xarray/issues/3739#issuecomment-590115864 | https://api.github.com/repos/pydata/xarray/issues/3739 | MDEyOklzc3VlQ29tbWVudDU5MDExNTg2NA== | avatar101 33062222 | 2020-02-23T21:03:53Z | 2020-02-23T21:03:53Z | NONE | @mathause thanks for your suggestions. Your first solution works fine for correcting the time data stored in the array. I also don't understand why @Chan-Jer Another work around which I used was to set the correct time value using cdo's |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ValueError when trying to encode time variable in a NetCDF file with CF convensions 558293655 | |
580935355 | https://github.com/pydata/xarray/issues/3739#issuecomment-580935355 | https://api.github.com/repos/pydata/xarray/issues/3739 | MDEyOklzc3VlQ29tbWVudDU4MDkzNTM1NQ== | avatar101 33062222 | 2020-01-31T22:17:34Z | 2020-01-31T22:17:34Z | NONE | Hi Ryan, thanks for your reply. Apologies for not creating a reproducible problem earlier as the files weren't created by xarray routine. Please find my attempt at reproducing the problem below: Minimum steps to reproduce the error```python import numpy as np import xarray as xr import pandas as pd data1 = np.ones(shape=(1, 181, 360)) lats=np.arange(-90,91, 1) lons=np.arange(-180,180,1) time1 = np.array([0]) creating the first datasetda_1 = xr.DataArray(data1, coords=[time1, lats, lons], dims=['time', 'lats', 'lons']) da_1.time.attrs['units'] = "hours since 1988-01-01 00:00:00" da_1.time.attrs['calendar'] = "proleptic_gregorian" da_1.time.attrs['standard_name'] = "time" ds_1 = xr.Dataset({'V':da_1}) ds_1.attrs['Conventions'] = 'CF' ds_1.to_netcdf('ds_1.nc', encoding=None) creating second test datasettime2=np.array([6]) # wrong time value da_2 = xr.DataArray(data1, coords=[time2, lats, lons], dims=['time', 'lats', 'lons']) da_2.time.attrs['units'] = "hours since 1988-01-01 06:00:00" da_2.time.attrs['calendar'] = "proleptic_gregorian" da_2.time.attrs['standard_name'] = "time" ds_2 = xr.Dataset({'V':da_2}) ds_2.attrs['Conventions'] = 'CF' saving it with wrong time valueds_2.to_netcdf('ds_2.nc', encoding=None) Reading the 2 files and concatenating themfiles = ['/path/to/ds_1.nc', '/path/to/ds_2.nc'] ds_test = xr.open_mfdataset(files, combine='nested', concat_dim='time', decode_cf=False) yr = 1988 # year dates = pd.date_range(start=(yr), end=str(yr+1), freq='6H', closed='left') ds_test.time.values=dates[:2] # fixing the time values ds_test.time.attrs['units'] = "Seconds since 1970-01-01 00:00:00" #required encoding ds_test.to_netcdf('ds_1_2.nc') # gives the same error ```
I've also mentioned your suggestion earlier in the original post. It also gives the same error message Please find the following reproducible steps incorporating your suggestion. Trying time encoding solution``` Reading the filesfiles = ['/path/to/ds_1.nc', '/path/to/ds_2.nc'] ds_test = xr.open_mfdataset(files, combine='nested', concat_dim='time', decode_cf=False) yr = 1988 # year dates = pd.date_range(start=(yr), end=str(yr+1), freq='6H', closed='left') ds_test.time.values=dates[:2] # fixing the time values encoding tryds_test.time.encoding['units'] = "Seconds since 1970-01-01 00:00:00" ds_test.to_netcdf('ds_1_2.nc') # gives same error ```
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ValueError when trying to encode time variable in a NetCDF file with CF convensions 558293655 | |
477580493 | https://github.com/pydata/xarray/pull/1203#issuecomment-477580493 | https://api.github.com/repos/pydata/xarray/issues/1203 | MDEyOklzc3VlQ29tbWVudDQ3NzU4MDQ5Mw== | avatar101 33062222 | 2019-03-28T12:48:09Z | 2019-03-28T12:48:09Z | NONE | @dcherian Thanks a lot for providing an example with another approach |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
add info in doc on how to facet with cartopy 200376941 | |
476769164 | https://github.com/pydata/xarray/pull/1203#issuecomment-476769164 | https://api.github.com/repos/pydata/xarray/issues/1203 | MDEyOklzc3VlQ29tbWVudDQ3Njc2OTE2NA== | avatar101 33062222 | 2019-03-26T17:46:57Z | 2019-03-28T12:46:14Z | NONE | @vnoel I'm trying to plot coastline using facet. I tried to give p = ds_v_test.sel(time=slice('2012-12-01', '2012-12-02 18:00'),\ lat= slice(-90,0)).V.squeeze().plot.pcolormesh(figsize=(16, 12), col='time', col_wrap=2, levels=16 ,\ cbar_kwargs={'label':'meridional v (m/s)'}, subplot_kws={'projection':ccrs.PlateCarree(),\ 'ax':ax.coastlines()}) ``` It gives me
At the moment, I can get around it by using this approach:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
add info in doc on how to facet with cartopy 200376941 | |
462271456 | https://github.com/pydata/xarray/issues/2758#issuecomment-462271456 | https://api.github.com/repos/pydata/xarray/issues/2758 | MDEyOklzc3VlQ29tbWVudDQ2MjI3MTQ1Ng== | avatar101 33062222 | 2019-02-11T09:59:06Z | 2019-02-11T09:59:06Z | NONE | @shoyer Ah! thanks. Certainly, a better error message would have helped me in this case. I agree that the easiest way is to just let xarray handle the datetime conversion. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Dataset.to_netcdf() results in unexpected encoding parameters for 'netCDF4' backend 408426920 | |
461833981 | https://github.com/pydata/xarray/issues/709#issuecomment-461833981 | https://api.github.com/repos/pydata/xarray/issues/709 | MDEyOklzc3VlQ29tbWVudDQ2MTgzMzk4MQ== | avatar101 33062222 | 2019-02-08T15:11:41Z | 2019-02-08T15:11:41Z | NONE | @shoyer Sure, I found a way around by using cdo but I can revisit it and provide more details |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Dataset.to_netcdf() fails to interpret 'encoding' option 125386091 | |
461546376 | https://github.com/pydata/xarray/issues/709#issuecomment-461546376 | https://api.github.com/repos/pydata/xarray/issues/709 | MDEyOklzc3VlQ29tbWVudDQ2MTU0NjM3Ng== | avatar101 33062222 | 2019-02-07T18:38:58Z | 2019-02-07T18:38:58Z | NONE | I'm facing the same problem of the unexpected encoding parameter
However, the same syntax works when I tried writing out a different file. I'm using xarray version 11.0 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Dataset.to_netcdf() fails to interpret 'encoding' option 125386091 | |
441034802 | https://github.com/pydata/xarray/issues/1844#issuecomment-441034802 | https://api.github.com/repos/pydata/xarray/issues/1844 | MDEyOklzc3VlQ29tbWVudDQ0MTAzNDgwMg== | avatar101 33062222 | 2018-11-22T13:43:23Z | 2018-11-22T13:44:48Z | NONE | For anyone stumbling upon this thread in the future, I would like to mention that I used the above grouping approach suggested by @spencerkclark for my dataset to calculate climatology with calendar day and it works smoothly. The only thing one should be careful is that you can't directly plot the data using
To get around it, either use group by the
Or convert back the grouped coordinate month_day_str to numeric. However, after doing all this I found out that the CDO function also calculates climatology by the ordinal day of the year. So, to be consistent I would stick to that method but it's anyway good to know that there is a way around to group by day and month if required in Xarray. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
How to broadcast along dayofyear 290023410 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue 5