issue_comments
1 row where user = 23300143 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
984014394 | https://github.com/pydata/xarray/issues/6036#issuecomment-984014394 | https://api.github.com/repos/pydata/xarray/issues/6036 | IC_kwDOAMm_X846pt46 | DonjetaR 23300143 | 2021-12-01T20:08:46Z | 2021-12-01T20:12:25Z | NONE | @dcherian thanks for your reply. I know Xarray can't do anything about the Dask computations of the chunks. My question was if it was possible to save the Dask chunk informations on the Zarr metadata such that it is not neccessary to calculate them ie. run the the Following example runs out of memory on my computer. I have 16 GB RAM. ```python import dask import xarray as xr chunks = (1, 1, 1) ds = xr.Dataset(data_vars={ "foo": (('x', 'y', 'z'), dask.array.empty((1000, 1000, 1000), chunks=(1000, 1000, 1000)))}) ds.to_zarr(store='data', group='ds.zarr', compute=False, encoding={'foo': {'chunks': chunks}}) ds_loaded = xr.open_zarr(group='ds.zarr', store='data') ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`xarray.open_zarr()` takes too long to lazy load when the data arrays contain a large number of Dask chunks. 1068225524 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1