issue_comments
9 rows where user = 16655388 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, reactions, created_at (date), updated_at (date)
user 1
- sbiner · 9 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
610466323 | https://github.com/pydata/xarray/issues/2436#issuecomment-610466323 | https://api.github.com/repos/pydata/xarray/issues/2436 | MDEyOklzc3VlQ29tbWVudDYxMDQ2NjMyMw== | sbiner 16655388 | 2020-04-07T15:49:03Z | 2020-04-07T15:49:03Z | NONE |
```
Yes,
Here is the output: ``` In [2]: xr.show_versions() INSTALLED VERSIONScommit: None python: 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) [GCC 7.3.0] python-bits: 64 OS: Linux OS-release: 3.10.0-514.2.2.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: fr_CA.UTF-8 LOCALE: fr_CA.UTF-8 libhdf5: 1.10.4 libnetcdf: 4.6.1 xarray: 0.15.2.dev29+g6048356 pandas: 1.0.1 numpy: 1.18.1 scipy: 1.4.1 netCDF4: 1.4.2 pydap: None h5netcdf: None h5py: 2.9.0 Nio: None zarr: None cftime: 1.0.4.2 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.3.1 dask: 2.10.1 distributed: 2.10.0 matplotlib: 3.0.2 cartopy: 0.16.0 seaborn: 0.9.0 numbagg: None pint: 0.9 setuptools: 45.2.0.post20200210 pip: 20.0.2 conda: None pytest: 5.3.4 IPython: 7.8.0 sphinx: 2.4.0 ```
Here is an output ouf ``` 11:41 neree ~/travail/xarray_open_mfdataset_perd_time_attributes :ncdump -hs /expl6/climato/arch/bbw/series/200001/snw_bbw_200001_se.nc netcdf snw_bbw_200001_se { dimensions: height = 1 ; rlat = 300 ; rlon = 340 ; time = UNLIMITED ; // (248 currently) variables: double height(height) ; height:units = "m" ; height:long_name = "height" ; height:standard_name = "height" ; height:axis = "Z" ; height:positive = "up" ; height:coordinate_defines = "point" ; height:actual_range = 0., 0. ; height:_Storage = "chunked" ; height:_ChunkSizes = 1 ; height:_DeflateLevel = 6 ; height:_Endianness = "little" ; double lat(rlat, rlon) ; lat:units = "degrees_north" ; lat:long_name = "latitude" ; lat:standard_name = "latitude" ; lat:actual_range = 7.83627367019653, 82.5695037841797 ; lat:_Storage = "chunked" ; lat:_ChunkSizes = 50, 50 ; lat:_DeflateLevel = 6 ; lat:_Endianness = "little" ; double lon(rlat, rlon) ; lon:units = "degrees_east" ; lon:long_name = "longitude" ; lon:standard_name = "longitude" ; lon:actual_range = -179.972747802734, 179.975296020508 ; lon:_Storage = "chunked" ; lon:_ChunkSizes = 50, 50 ; lon:_DeflateLevel = 6 ; lon:_Endianness = "little" ; double rlat(rlat) ; rlat:long_name = "latitude in rotated pole grid" ; rlat:units = "degrees" ; rlat:standard_name = "grid_latitude" ; rlat:axis = "Y" ; rlat:coordinate_defines = "point" ; rlat:actual_range = -30.7100009918213, 35.0699996948242 ; rlat:_Storage = "chunked" ; rlat:_ChunkSizes = 50 ; rlat:_DeflateLevel = 6 ; rlat:_Endianness = "little" ; double rlon(rlon) ; rlon:long_name = "longitude in rotated pole grid" ; rlon:units = "degrees" ; rlon:standard_name = "grid_longitude" ; rlon:axis = "X" ; rlon:coordinate_defines = "point" ; rlon:actual_range = -33.9900054931641, 40.5899810791016 ; rlon:_Storage = "chunked" ; rlon:_ChunkSizes = 50 ; rlon:_DeflateLevel = 6 ; rlon:_Endianness = "little" ; char rotated_pole ; rotated_pole:grid_mapping_name = "rotated_latitude_longitude" ; rotated_pole:grid_north_pole_latitude = 42.5f ; rotated_pole:grid_north_pole_longitude = 83.f ; rotated_pole:north_pole_grid_longitude = 0.f ; float snw(time, rlat, rlon) ; snw:units = "kg m-2" ; snw:long_name = "Surface Snow Amount" ; snw:standard_name = "surface_snow_amount" ; snw:realm = "landIce land" ; snw:cell_measures = "area: areacella" ; snw:coordinates = "lon lat" ; snw:grid_mapping = "rotated_pole" ; snw:level_desc = "Height" ; snw:cell_methods = "time: point" ; snw:_Storage = "chunked" ; snw:_ChunkSizes = 250, 50, 50 ; snw:_DeflateLevel = 6 ; snw:_Endianness = "little" ; double time(time) ; time:long_name = "time" ; time:standard_name = "time" ; time:axis = "T" ; time:calendar = "gregorian" ; time:units = "days since 2000-01-01 00:00:00" ; time:coordinate_defines = "point" ; time:_Storage = "chunked" ; time:_ChunkSizes = 250 ; time:_DeflateLevel = 6 ; time:_Endianness = "little" ; // global attributes: :Conventions = "CF-1.6" ; :contact = "paquin.dominique@ouranos.ca" ; :comment = "CRCM5 v3331 0.22 deg AMNO22d2 L56 S17-15m ERA-INTERIM 0,75d PILSPEC PS3" ; :creation_date = "2016-08-15 " ; :experiment = "simulation de reference " ; :experiment_id = "bbw" ; :driving_experiment = "ERA-INTERIM " ; :driving_model_id = "ECMWF-ERAINT " ; :driving_model_ensemble_member = "r1i1p1 " ; :driving_experiment_name = "evaluation " ; :institution = "Ouranos " ; :institute_id = "Our. " ; :model_id = "OURANOS-CRCM5" ; :rcm_version_id = "v3331" ; :project_id = "" ; :ouranos_domain_name = "AMNO22d2 " ; :ouranos_run_id = "bbw OURALIB 1.3" ; :product = "output" ; :reference = "http://www.ouranos.ca" ; :history = "Mon Nov 7 10:13:55 2016: ncks -O --chunk_policy g3d --cnk_dmn plev,1 --cnk_dmn rlon,50 --cnk_dmn rlat,50 --cnk_dmn time,250 /localscratch/72194520.gm-1r16-n04.guillimin.clumeq.ca/bbw/bbw/200001/nc4c_snw_bbw_200001_se.nc /localscratch/72194520.gm-1r16-n04.guillimin.clumeq.ca/bbw/bbw/200001/snw_bbw_200001_se.nc\n", "Mon Nov 7 10:13:50 2016: ncks -O --fl_fmt=netcdf4_classic -L 6 /localscratch/72194520.gm-1r16-n04.guillimin.clumeq.ca/bbw/bbw/200001/trim_snw_bbw_200001_se.nc /localscratch/72194520.gm-1r16-n04.guillimin.clumeq.ca/bbw/bbw/200001/nc4c_snw_bbw_200001_se.nc\n", "Mon Nov 7 10:13:48 2016: ncks -d time,2000-01-01 00:00:00,2000-01-31 23:59:59 /home/dpaquin1/postprod/bbw/transit2/200001/snw_bbw_200001_se.nc /localscratch/72194520.gm-1r16-n04.guillimin.clumeq.ca/bbw/bbw/200001/trim_snw_bbw_200001_se.nc\n", "Fri Nov 4 12:49:33 2016: ncks -4 -L 1 --no_tmp_fl -u -d time,2000-01-01 00:00,2000-02-01 00:00 /localscratch/72001487.gm-1r16-n04.guillimin.clumeq.ca/I5/snw_bbw_2000_se.nc /home/dpaquin1/postprod/bbw/work/200001/snw_bbw_200001_se.nc\n", "Fri Nov 4 12:48:52 2016: ncks -4 -L 1 /localscratch/72001487.gm-1r16-n04.guillimin.clumeq.ca/I5/snw_bbw_2000_se.nc /home/dpaquin1/postprod/bbw/work/2000/snw_bbw_2000_se.nc\n", "Fri Nov 4 12:48:44 2016: ncatted -O -a cell_measures,snw,o,c,area: areacella /localscratch/72001487.gm-1r16-n04.guillimin.clumeq.ca/I5/snw_bbw_2000_se.nc 25554_bbb" ; :NCO = "4.4.4" ; :_SuperblockVersion = 2 ; :_IsNetcdf4 = 1 ; :_Format = "netCDF-4 classic model" ; } ``` I guess the next option could be to go into xarray code to try to find what the problem is but I would need some direction for doing this. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
save "encoding" when using open_mfdataset 363299007 | |
610020749 | https://github.com/pydata/xarray/issues/2436#issuecomment-610020749 | https://api.github.com/repos/pydata/xarray/issues/2436 | MDEyOklzc3VlQ29tbWVudDYxMDAyMDc0OQ== | sbiner 16655388 | 2020-04-06T20:31:10Z | 2020-04-06T20:31:10Z | NONE |
3498 says something about a
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
save "encoding" when using open_mfdataset 363299007 | |
609998713 | https://github.com/pydata/xarray/issues/2436#issuecomment-609998713 | https://api.github.com/repos/pydata/xarray/issues/2436 | MDEyOklzc3VlQ29tbWVudDYwOTk5ODcxMw== | sbiner 16655388 | 2020-04-06T19:43:55Z | 2020-04-06T19:43:55Z | NONE | @TomNicholas I forgot about this sorry. I just made a quick check with the latest xarray master and I still have the problem ... see code. Related question but maybe out of line, is there any way to know that the snw.time type is cftime.DatetimeNoLeap (as it is visible in the overview of
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
save "encoding" when using open_mfdataset 363299007 | |
461561653 | https://github.com/pydata/xarray/issues/1385#issuecomment-461561653 | https://api.github.com/repos/pydata/xarray/issues/1385 | MDEyOklzc3VlQ29tbWVudDQ2MTU2MTY1Mw== | sbiner 16655388 | 2019-02-07T19:22:58Z | 2019-02-07T19:22:58Z | NONE | I just tried and it did not help ... ``` In [5]: run test_ouverture_fichier_nc_vs_xr.py timing glob: 0.00s timing netcdf4: 3.36s timing xarray: 44.82s timing xarray tune: 14.47s In [6]: xr.show_versions() INSTALLED VERSIONScommit: None python: 2.7.15 |Anaconda, Inc.| (default, Dec 14 2018, 19:04:19) [GCC 7.3.0] python-bits: 64 OS: Linux OS-release: 3.10.0-514.2.2.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_CA.UTF-8 LOCALE: None.None libhdf5: 1.10.4 libnetcdf: 4.6.1 xarray: 0.11.3 pandas: 0.24.0 numpy: 1.13.3 scipy: 1.2.0 netCDF4: 1.4.2 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.0.3.4 PseudonetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.2.1 cyordereddict: None dask: 1.0.0 distributed: 1.25.2 matplotlib: 2.2.3 cartopy: None seaborn: None setuptools: 40.5.0 pip: 19.0.1 conda: None pytest: None IPython: 5.8.0 sphinx: 1.8.2 ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
slow performance with open_mfdataset 224553135 | |
461551320 | https://github.com/pydata/xarray/issues/1385#issuecomment-461551320 | https://api.github.com/repos/pydata/xarray/issues/1385 | MDEyOklzc3VlQ29tbWVudDQ2MTU1MTMyMA== | sbiner 16655388 | 2019-02-07T18:52:53Z | 2019-02-07T18:52:53Z | NONE | I have the same problem. open_mfdatasset is 10X slower than nc.MFDataset. I used the following code to get some timing on opening 456 local netcdf files located in a netcdf4t00 = time.time() ds1 = nc.MFDataset(l_fichiers_nc) dates1 = ouralib.netcdf.calcule_dates(ds1)print ('timing netcdf4: {:6.2f}s'.format(time.time()-t00)) xarrayt00 = time.time() ds2 = xr.open_mfdataset(l_fichiers_nc) print ('timing xarray: {:6.2f}s'.format(time.time()-t00)) xarray tunet00 = time.time() ds3 = xr.open_mfdataset(l_fichiers_nc, decode_cf=False, concat_dim='time') ds3 = xr.decode_cf(ds3) print ('timing xarray tune: {:6.2f}s'.format(time.time()-t00)) ``` The output I get is :
I made tests on a centOS server using python2.7 and 3.6, and on mac OS as well with python3.6. The timing changes but the ratios are similar between netCDF4 and xarray. Is there any way of making open_mfdataset go faster? In case it helps, here are output from for python 2.7: ``` 13996351 function calls (13773659 primitive calls) in 42.133 seconds Ordered by: internal time ncalls tottime percall cumtime percall filename:lineno(function) 2664 16.290 0.006 16.290 0.006 {time.sleep} 912 6.330 0.007 6.623 0.007 netCDF4_.py:244(_open_netcdf4_group) ``` for python 3.6: ``` 9663408 function calls (9499759 primitive calls) in 31.934 seconds Ordered by: internal time ncalls tottime percall cumtime percall filename:lineno(function)
5472 15.140 0.003 15.140 0.003 {method 'acquire' of 'thread.lock' objects}
912 5.661 0.006 5.718 0.006 netCDF4.py:244(_open_netcdf4_group)
Ordered by: internal time ncalls tottime percall cumtime percall filename:lineno(function) 5472 15.140 0.003 15.140 0.003 {method 'acquire' of 'thread.lock' objects} 912 5.661 0.006 5.718 0.006 netCDF4.py:244(open_netcdf4_group) 4104 0.564 0.000 0.757 0.000 {built-in method _operator.getitem} 133152/129960 0.477 0.000 0.660 0.000 indexing.py:496(shape) 1554550/1554153 0.414 0.000 0.711 0.000 {built-in method builtins.isinstance} 912 0.260 0.000 0.260 0.000 {method 'close' of 'netCDF4._netCDF4.Dataset' objects} 6384 0.244 0.000 0.953 0.000 netCDF4.py:361(open_store_variable) 910 0.241 0.000 0.595 0.001 duck_array_ops.py:141(array_equiv) 20990 0.235 0.000 0.343 0.000 {pandas.libs.lib.is_scalar} 37483/36567 0.228 0.000 0.230 0.000 {built-in method builtins.iter} 93986 0.219 0.000 1.607 0.000 variable.py:239(__init__) 93982 0.194 0.000 0.194 0.000 variable.py:706(attrs) 33744 0.189 0.000 0.189 0.000 {method 'getncattr' of 'netCDF4._netCDF4.Variable' objects} 15511 0.175 0.000 0.638 0.000 core.py:1776(normalize_chunks) 5930 0.162 0.000 0.350 0.000 missing.py:183(_isna_ndarraylike) 297391/296926 0.159 0.000 0.380 0.000 {built-in method builtins.getattr} 134230 0.155 0.000 0.269 0.000 abc.py:180(__instancecheck__) 6384 0.142 0.000 0.199 0.000 netCDF4.py:34(init) 93986 0.126 0.000 0.671 0.000 variable.py:414(_parse_dimensions) 156545 0.119 0.000 0.811 0.000 utils.py:450(ndim) 12768 0.119 0.000 0.203 0.000 core.py:747(blockdims_from_blockshape) 6384 0.117 0.000 2.526 0.000 conventions.py:245(decode_cf_variable) 741183/696380 0.116 0.000 0.134 0.000 {built-in method builtins.len} 41957/23717 0.110 0.000 4.395 0.000 {built-in method numpy.core.multiarray.array} 93978 0.110 0.000 0.110 0.000 variable.py:718(encoding) 219940 0.109 0.000 0.109 0.000 _weakrefset.py:70(contains) 99458 0.100 0.000 0.440 0.000 variable.py:137(as_compatible_data) 53882 0.085 0.000 0.095 0.000 core.py:891(shape) 140604 0.084 0.000 0.628 0.000 variable.py:272(shape) 3192 0.084 0.000 0.170 0.000 utils.py:88(_StartCountStride) 10494 0.081 0.000 0.081 0.000 {method 'reduce' of 'numpy.ufunc' objects} 44688 0.077 0.000 0.157 0.000 variables.py:102(unpack_for_decoding) ``` output of xr.show_versions() ``` xr.show_versions() INSTALLED VERSIONScommit: None python: 3.6.8.final.0 python-bits: 64 OS: Linux OS-release: 3.10.0-514.2.2.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_CA.UTF-8 LOCALE: en_CA.UTF-8 xarray: 0.11.0 pandas: 0.24.1 numpy: 1.15.4 scipy: None netCDF4: 1.4.2 h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.0.3.4 PseudonetCDF: None rasterio: None iris: None bottleneck: None cyordereddict: None dask: 1.1.1 distributed: 1.25.3 matplotlib: 3.0.2 cartopy: None seaborn: None setuptools: 40.7.3 pip: 19.0.1 conda: None pytest: None IPython: 7.2.0 sphinx: None ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
slow performance with open_mfdataset 224553135 | |
424439785 | https://github.com/pydata/xarray/issues/2437#issuecomment-424439785 | https://api.github.com/repos/pydata/xarray/issues/2437 | MDEyOklzc3VlQ29tbWVudDQyNDQzOTc4NQ== | sbiner 16655388 | 2018-09-25T17:53:01Z | 2018-09-25T17:53:01Z | NONE | @spencerkclark I made tests with Thanks for the complete answer. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray potential inconstistencies with cftime 363326726 | |
424436617 | https://github.com/pydata/xarray/issues/2436#issuecomment-424436617 | https://api.github.com/repos/pydata/xarray/issues/2436 | MDEyOklzc3VlQ29tbWVudDQyNDQzNjYxNw== | sbiner 16655388 | 2018-09-25T17:43:35Z | 2018-09-25T17:43:35Z | NONE | @spencerkclark Yes I was looking at time.encoding. Following you example I did some tests and the problem is related to the fact that I am opening multiple netCDF files with open_mfdataset. Doing so time.encoding is empty while it is as expected when opening any of the files with open_dataset instead. |
{ "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
save "encoding" when using open_mfdataset 363299007 | |
424117789 | https://github.com/pydata/xarray/issues/2436#issuecomment-424117789 | https://api.github.com/repos/pydata/xarray/issues/2436 | MDEyOklzc3VlQ29tbWVudDQyNDExNzc4OQ== | sbiner 16655388 | 2018-09-24T20:42:20Z | 2018-09-24T20:42:20Z | NONE | It would be ok but it is (or looks) empty when I use open_dataset() |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
save "encoding" when using open_mfdataset 363299007 | |
392802203 | https://github.com/pydata/xarray/issues/2187#issuecomment-392802203 | https://api.github.com/repos/pydata/xarray/issues/2187 | MDEyOklzc3VlQ29tbWVudDM5MjgwMjIwMw== | sbiner 16655388 | 2018-05-29T14:42:35Z | 2018-05-29T14:43:50Z | NONE | Hi @shoyer updating netCDF4 to 1.4.0 works. I now obtain a proper IOError message. Help appreciated. Thanks. I intent to close the issue, hope it's proper "etiquette". |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_dataset crash with long filenames 326553877 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue 4