issue_comments
2 rows where user = 1559890 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
user 1
- ray306 · 2 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 619635716 | https://github.com/pydata/xarray/issues/3984#issuecomment-619635716 | https://api.github.com/repos/pydata/xarray/issues/3984 | MDEyOklzc3VlQ29tbWVudDYxOTYzNTcxNg== | ray306 1559890 | 2020-04-26T22:38:20Z | 2020-04-26T22:38:20Z | NONE | Your both methods worked! Thank you! |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Support flexible DataArray shapes in Dataset 602793814 | |
| 488112182 | https://github.com/pydata/xarray/issues/1569#issuecomment-488112182 | https://api.github.com/repos/pydata/xarray/issues/1569 | MDEyOklzc3VlQ29tbWVudDQ4ODExMjE4Mg== | ray306 1559890 | 2019-04-30T20:55:01Z | 2019-04-30T20:55:01Z | NONE | I got a solution which is not so flexible but works:
Data:
for k,v in multi_groupby(da,['second','variable']):
print(k,v)
|
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Grouping with multiple levels 257070215 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
issue 2