issue_comments
2 rows where user = 15239248 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1364707378 | https://github.com/pydata/xarray/issues/7401#issuecomment-1364707378 | https://api.github.com/repos/pydata/xarray/issues/7401 | IC_kwDOAMm_X85RV8gy | daliagachc 15239248 | 2022-12-25T16:38:03Z | 2022-12-25T16:38:03Z | NONE | I have actually manage to make it work with minimal modification of the source xarray code: ```python import xarray as xr import matplotlib.pyplot as plt import matplotlib as mpl def _pass(_,*__): pass mpl.figure.SubFigure.tight_layout = _pass da = xr.tutorial.open_dataset("air_temperature")['air'] fig:plt.Figure = plt.figure( constrained_layout=True, figsize = (24,22) ) (fig_top,fig_bot) = fig.subfigures(2,1) ( da.groupby(da['time'].dt.season) .mean() .plot(col='season',fig=fig_top) ) (
da.groupby(da['time'].dt.hour)
.mean()
.plot(col='hour', fig=fig_bot)
)
```
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Allow passing figure handle to FacetGrid 1510151748 | |
| 1364696481 | https://github.com/pydata/xarray/issues/7401#issuecomment-1364696481 | https://api.github.com/repos/pydata/xarray/issues/7401 | IC_kwDOAMm_X85RV52h | daliagachc 15239248 | 2022-12-25T15:12:15Z | 2022-12-25T15:12:15Z | NONE | thanks for the reply. Somehow i don't find an elegant way that does not involve many loops and hoops. Lets consider the following short example:
I want to produce a figure that takes the xr.tutorial.open_dataset("air_temperature") and produces a mean grouped by season and hour in the same figure:
da = xr.tutorial.open_dataset("air_temperature")['air'] ( da.groupby(da['time'].dt.season) .mean() .plot(col='season') ) (
da.groupby(da['time'].dt.hour)
.mean()
.plot(col='hour')
)
```
but combining both seems quite complicated to me. I wish I could pass a subfigure to the plot function in the following way ```python fig:plt.Figure = plt.figure() (fig_top,fig_bot) = fig.subfigures(2,1) ( da.groupby(da['time'].dt.season) .mean() .plot(col='season',fig=fig_top) ) (
da.groupby(da['time'].dt.hour)
.mean()
.plot(col='hour', fig=fig_bot)
)
```
maybe I am missing a smart way of doing this? cheers |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Allow passing figure handle to FacetGrid 1510151748 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);

Creating the top and bottom rows independently is super efficient with xarray:
```python
import xarray as xr
import matplotlib.pyplot as plt

user 1