issue_comments
1 row where user = 12130884 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
417337306 | https://github.com/pydata/xarray/issues/1143#issuecomment-417337306 | https://api.github.com/repos/pydata/xarray/issues/1143 | MDEyOklzc3VlQ29tbWVudDQxNzMzNzMwNg== | DavidTsangHW 12130884 | 2018-08-30T14:21:55Z | 2018-08-30T14:21:55Z | NONE | Pardon me for extending this discussion. I encountered the same problem when calculating timedelta in a dataframe. It even ended with an error when I tried to call the days attribute. I am using Numpy 1.6.1 AttributeError: 'Series' object has no attribute 'days' Problem df_trans['DELTA'] = df_trans['DATE2'] - df_trans['DATE1'] print df_trans['DELTA'].dtype
print df_trans['DELTA']
df_trans['DELTA'] = df_trans['DELTA'].astype('timedelta64[D]') print df_trans['DELTA'].dtype
print df_trans['DELTA']
print df_trans['DELTA'].days
I get rid of the problem by putting it in to a list for the conversion.
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
timedelta64[D] is always coerced to timedelta64[ns] 192325490 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1