issue_comments
4 rows where user = 113055 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 333672308 | https://github.com/pydata/xarray/issues/1599#issuecomment-333672308 | https://api.github.com/repos/pydata/xarray/issues/1599 | MDEyOklzc3VlQ29tbWVudDMzMzY3MjMwOA== | nicain 113055 | 2017-10-02T21:35:50Z | 2017-10-02T21:39:49Z | NONE | Sweet, this is exactly what I am used to! Ill give a shot to writing a few tests later today, and make a PR. Can you suggest some core devs I can ping for a PR review? Ill ask @chrisbarber (we work together) to review, but I'd like more eyeballs on it. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
DataArray to_dict() without converting with numpy tolist() 261727170 | |
| 333636786 | https://github.com/pydata/xarray/issues/1599#issuecomment-333636786 | https://api.github.com/repos/pydata/xarray/issues/1599 | MDEyOklzc3VlQ29tbWVudDMzMzYzNjc4Ng== | nicain 113055 | 2017-10-02T19:18:58Z | 2017-10-02T19:18:58Z | NONE | @chrisbarber Here is my example implementation: https://github.com/nicain/xarray/blob/fa86e3d38ebf4e641cafd963a5b69a77539b931d/xarray/core/dataarray.py#L1388 @shoyer Can you point me to where to edit documentation and unit test best practices? |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
DataArray to_dict() without converting with numpy tolist() 261727170 | |
| 333243054 | https://github.com/pydata/xarray/issues/1599#issuecomment-333243054 | https://api.github.com/repos/pydata/xarray/issues/1599 | MDEyOklzc3VlQ29tbWVudDMzMzI0MzA1NA== | nicain 113055 | 2017-09-29T21:26:17Z | 2017-09-29T21:26:17Z | NONE | @chrisbarber Maybe a method to_byte_dict that (in implementation) takes the output from numpy=True and walks the dict with tobytes? |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
DataArray to_dict() without converting with numpy tolist() 261727170 | |
| 333211787 | https://github.com/pydata/xarray/issues/1599#issuecomment-333211787 | https://api.github.com/repos/pydata/xarray/issues/1599 | MDEyOklzc3VlQ29tbWVudDMzMzIxMTc4Nw== | nicain 113055 | 2017-09-29T19:04:24Z | 2017-09-29T19:04:24Z | NONE | Yeah, my thoughts exactly. I am almost done with this in my fork... numpy might be confusing for those who will see the module name when they look at it. How does a kwarg:
sound? |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
DataArray to_dict() without converting with numpy tolist() 261727170 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1