home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

1 row where issue = 99026442 and user = 6063709 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • aidanheerdegen · 1 ✖

issue 1

  • Wall time much greater than CPU time · 1 ✖

author_association 1

  • CONTRIBUTOR 1
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
133992153 https://github.com/pydata/xarray/issues/516#issuecomment-133992153 https://api.github.com/repos/pydata/xarray/issues/516 MDEyOklzc3VlQ29tbWVudDEzMzk5MjE1Mw== aidanheerdegen 6063709 2015-08-24T02:21:43Z 2015-08-24T02:21:43Z CONTRIBUTOR

What is the netCDF4 chunking scheme for your compressed data? (use 'ncdump -hs' to reveal the per variable chunking scheme).

Very large datasets can have very long load times depending on the access pattern.

This can be overcome with an appropriately chosen chunking scheme, but if the chunk sizes are not well chosen (and the default library chunking is pretty terrible) then certain access patterns might still be very slow.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Wall time much greater than CPU time 99026442

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 17.567ms · About: xarray-datasette