home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

8 rows where issue = 970619131 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: reactions, created_at (date), updated_at (date)

user 2

  • kmuehlbauer 5
  • scottstanie 3

author_association 2

  • MEMBER 5
  • CONTRIBUTOR 3

issue 1

  • Loading datasets of numpy string arrays leads to error and/or segfault · 8 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
1545346823 https://github.com/pydata/xarray/issues/5706#issuecomment-1545346823 https://api.github.com/repos/pydata/xarray/issues/5706 IC_kwDOAMm_X85cHB8H kmuehlbauer 5821660 2023-05-12T08:06:06Z 2023-05-12T08:06:06Z MEMBER

This is resolved in recent netcdf-c/netcdf4-python and works with recent Xarray.

{
    "total_count": 1,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 1,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Loading datasets of numpy string arrays leads to error and/or segfault 970619131
1170812062 https://github.com/pydata/xarray/issues/5706#issuecomment-1170812062 https://api.github.com/repos/pydata/xarray/issues/5706 IC_kwDOAMm_X85FySye kmuehlbauer 5821660 2022-06-30T06:17:49Z 2022-06-30T06:17:49Z MEMBER

Problem source identified in netcdf-c: https://github.com/Unidata/netcdf-c/issues/2159

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Loading datasets of numpy string arrays leads to error and/or segfault 970619131
1012204673 https://github.com/pydata/xarray/issues/5706#issuecomment-1012204673 https://api.github.com/repos/pydata/xarray/issues/5706 IC_kwDOAMm_X848VQSB scottstanie 8291800 2022-01-13T14:48:08Z 2022-01-13T14:48:08Z CONTRIBUTOR

Sounds good, but it seems like you're correct that it's a netcdf/netcdf4-python problem here, so I'll defer to others as to what the best changes to default settings would be to avoid the segfaults

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Loading datasets of numpy string arrays leads to error and/or segfault 970619131
1012189867 https://github.com/pydata/xarray/issues/5706#issuecomment-1012189867 https://api.github.com/repos/pydata/xarray/issues/5706 IC_kwDOAMm_X848VMqr kmuehlbauer 5821660 2022-01-13T14:31:31Z 2022-01-13T14:31:31Z MEMBER

@scottstanie I'll check my h5py/hdf5 settings. But I doubt that might be the difference. I've experienced that the trailing garbage is changing from run to run, sometimes disappearing.

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Loading datasets of numpy string arrays leads to error and/or segfault 970619131
1012132794 https://github.com/pydata/xarray/issues/5706#issuecomment-1012132794 https://api.github.com/repos/pydata/xarray/issues/5706 IC_kwDOAMm_X848U-u6 scottstanie 8291800 2022-01-13T13:23:45Z 2022-01-13T13:23:45Z CONTRIBUTOR

ah sorry, didn't see the request for ncdump.

``` $ ncdump test_str_list.h5 netcdf test_str_list { dimensions: phony_dim_0 = 2 ; phony_dim_1 = 2 ; variables: string pairs(phony_dim_0, phony_dim_1) ; data:

pairs = "2020010120200201 ", NIL, "2020010120200301 ", NIL ; } `` Interesting that mypairsseems different than yours without the obvious trailing garbage. Also, when I run your first code snippet, I have different areas that are garbled, with bothNULLPADandnumpy_S` displaying garbage

``` netcdf test_str_list_attr {

// global attributes: string :NULLPAD = "20200101�<T��\007", "20200201", "20200101�=T��\007", "20200301" ; string :NULLTERM = "20200101", "20200201", "20200101", "20200301" ; string :numpy_S = "20200101", "20200201\1775T��\007", "20200101", "20200301�3T��\007" ; string :numpy_O = "20200101", "20200201", "20200101", "20200301" ; } ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Loading datasets of numpy string arrays leads to error and/or segfault 970619131
1012003403 https://github.com/pydata/xarray/issues/5706#issuecomment-1012003403 https://api.github.com/repos/pydata/xarray/issues/5706 IC_kwDOAMm_X848UfJL kmuehlbauer 5821660 2022-01-13T10:31:25Z 2022-01-13T10:31:25Z MEMBER

@scottstanie Here is the output of ncdump:

``` netcdf test_str_list { dimensions: phony_dim_0 = 2 ; phony_dim_1 = 2 ; variables: string pairs(phony_dim_0, phony_dim_1) ; data:

pairs = "2020010120200201�\f\033��U", NIL, "2020010120200301 ", NIL ; } ```

You see the trailing garbage. This is obviously a problem with netcdf-c/netcdf4-python, as it is not there with pure hdf5 (h5py/h5netcdf).

But, there is a difference with Attributes and Datasets:

```pathon import h5py import xarray as xr

with h5py.File("test_str_list_attr.h5", "w") as hf: sid = h5py.h5s.create_simple((2, 2), (2, 2)) tid1 = h5py.h5t.TypeID.copy(h5py.h5t.C_S1) tid1.set_size(8) tid1.set_strpad(h5py.h5t.STR_NULLPAD)

tid2 = h5py.h5t.TypeID.copy(h5py.h5t.C_S1)
tid2.set_size(9)
tid2.set_strpad(h5py.h5t.STR_NULLTERM)

blob = np.array([["20200101", "20200201"], ["20200101", "20200301"]]).astype("S")

# Attributes
aid = h5py.h5a.create(hf.id, b"NULLPAD", tid1, sid)
ret = aid.write(blob)

aid = h5py.h5a.create(hf.id, b"NULLTERM", tid2, sid)
ret = aid.write(blob)

hf.attrs["numpy_S"] = blob
hf.attrs["numpy_O"] = blob.astype("O")

!h5dump test_str_list_attr.h5 !ncdump test_str_list_attr.h5

with xr.load_dataset("test_str_list_attr.h5", engine="h5netcdf", phony_dims="sort") as ds: display(ds) with xr.load_dataset("test_str_list_attr.h5", engine="netcdf4") as ds: display(ds) with nc.Dataset("test_str_list_attr.h5") as ds: display(ds) display(ds.NULLTERM) display(ds.NULLPAD) display(ds.numpy_O) display(ds.numpy_S) ```


Output:

``` HDF5 "test_str_list_attr.h5" { GROUP "/" { ATTRIBUTE "NULLPAD" { DATATYPE H5T_STRING { STRSIZE 8; STRPAD H5T_STR_NULLPAD; CSET H5T_CSET_ASCII; CTYPE H5T_C_S1; } DATASPACE SIMPLE { ( 2, 2 ) / ( 2, 2 ) } DATA { (0,0): "20200101", "20200201", (1,0): "20200101", "20200301" } } ATTRIBUTE "NULLTERM" { DATATYPE H5T_STRING { STRSIZE 9; STRPAD H5T_STR_NULLTERM; CSET H5T_CSET_ASCII; CTYPE H5T_C_S1; } DATASPACE SIMPLE { ( 2, 2 ) / ( 2, 2 ) } DATA { (0,0): "20200101", "20200201", (1,0): "20200101", "20200301" } } ATTRIBUTE "numpy_O" { DATATYPE H5T_STRING { STRSIZE H5T_VARIABLE; STRPAD H5T_STR_NULLTERM; CSET H5T_CSET_ASCII; CTYPE H5T_C_S1; } DATASPACE SIMPLE { ( 2, 2 ) / ( 2, 2 ) } DATA { (0,0): "20200101", "20200201", (1,0): "20200101", "20200301" } } ATTRIBUTE "numpy_S" { DATATYPE H5T_STRING { STRSIZE 8; STRPAD H5T_STR_NULLPAD; CSET H5T_CSET_ASCII; CTYPE H5T_C_S1; } DATASPACE SIMPLE { ( 2, 2 ) / ( 2, 2 ) } DATA { (0,0): "20200101", "20200201", (1,0): "20200101", "20200301" } } } } netcdf test_str_list_attr { // global attributes: string :NULLPAD = "20200101", "20200201", "20200101", "20200301" ; string :NULLTERM = "20200101", "20200201", "20200101", "20200301" ; string :numpy_S = "20200101", "20200201@�s}�U", "20200101", "20200301�6t}�U" ; string :numpy_O = "20200101", "20200201", "20200101", "20200301" ; } <xarray.Dataset> Dimensions: () Data variables: *empty* Attributes: NULLPAD: [[b'20200101' b'20200201']\n [b'20200101' b'20200301']] NULLTERM: [[b'20200101' b'20200201']\n [b'20200101' b'20200301']] numpy_O: [['20200101' '20200201']\n ['20200101' '20200301']] numpy_S: [[b'20200101' b'20200201']\n [b'20200101' b'20200301']] <xarray.Dataset> Dimensions: () Data variables: *empty* Attributes: NULLPAD: ['20200101', '20200201', '20200101', '20200301'] NULLTERM: ['20200101', '20200201', '20200101', '20200301'] numpy_S: ['20200101', '20200201', '20200101p��i�U', '20200301'] numpy_O: ['20200101', '20200201', '20200101', '20200301'] <class 'netCDF4._netCDF4.Dataset'> root group (NETCDF4 data model, file format HDF5): NULLPAD: ['20200101', '20200201', '20200101', '20200301'] NULLTERM: ['20200101', '20200201', '20200101', '20200301'] numpy_S: ['20200101', '20200201', '20200101', '20200301'] numpy_O: ['20200101', '20200201', '20200101', '20200301'] dimensions(sizes): variables(dimensions): groups: ['20200101', '20200201', '20200101', '20200301'] ['20200101', '20200201', '20200101', '20200301'] ['20200101', '20200201', '20200101', '20200301'] ['20200101', '20200201', '20200101', '20200301'] ```

It's clearly seen, that the Datasets are correct in hdf5 dump, but somehow netcdf-c has issues with the string NULLPAD/NULLTERM. But at least there is no segfault with attributes. Othe than with Datasets/Variables:

```python import h5py import xarray as xr

with h5py.File("test_str_list_ds.h5", "w") as hf: blob = np.array([["20200101", "20200201"], ["20200101", "20200301"]]).astype("S")

# Datasets
sid = h5py.h5s.create_simple((2, 2), (2, 2))

tid3 = h5py.h5t.TypeID.copy(h5py.h5t.C_S1)
tid3.set_size(8)
tid3.set_strpad(h5py.h5t.STR_NULLPAD)

tid4 = h5py.h5t.TypeID.copy(h5py.h5t.C_S1)
tid4.set_size(9)
tid4.set_strpad(h5py.h5t.STR_NULLTERM)

aid = h5py.h5d.create(hf.id, b"NULLPAD", tid3, sid)
ret = aid.write(sid, h5py.h5s.ALL, blob)

aid = h5py.h5d.create(hf.id, b"NULLTERM", tid4, sid)
ret = aid.write(sid, h5py.h5s.ALL, blob)

hf["numpy_S"] = blob
hf["numpy_O"] = blob.astype("O")

!h5dump test_str_list_ds.h5 !ncdump test_str_list_ds.h5

with xr.load_dataset("test_str_list_ds.h5", engine="h5netcdf", phony_dims="sort") as ds: display(ds)

with xr.load_dataset("test_str_list_ds.h5", engine="netcdf4") as ds:

display(ds["numpy_O"])

with nc.Dataset("test_str_list_ds.h5") as ds:

display(ds)

#display("NULLTERM:", ds["NULLTERM"][:])

#display("NULLPAD:", ds["NULLPAD"][:])

display("numpy_O", ds["numpy_O"][:])

#display("numpy_S", ds["numpy_S"][:])

```
Output:

``` HDF5 "test_str_list_ds.h5" { GROUP "/" { DATASET "NULLPAD" { DATATYPE H5T_STRING { STRSIZE 8; STRPAD H5T_STR_NULLPAD; CSET H5T_CSET_ASCII; CTYPE H5T_C_S1; } DATASPACE SIMPLE { ( 2, 2 ) / ( 2, 2 ) } DATA { (0,0): "20200101", "20200201", (1,0): "20200101", "20200301" } } DATASET "NULLTERM" { DATATYPE H5T_STRING { STRSIZE 9; STRPAD H5T_STR_NULLTERM; CSET H5T_CSET_ASCII; CTYPE H5T_C_S1; } DATASPACE SIMPLE { ( 2, 2 ) / ( 2, 2 ) } DATA { (0,0): "20200101", "20200201", (1,0): "20200101", "20200301" } } DATASET "numpy_O" { DATATYPE H5T_STRING { STRSIZE H5T_VARIABLE; STRPAD H5T_STR_NULLTERM; CSET H5T_CSET_ASCII; CTYPE H5T_C_S1; } DATASPACE SIMPLE { ( 2, 2 ) / ( 2, 2 ) } DATA { (0,0): "20200101", "20200201", (1,0): "20200101", "20200301" } } DATASET "numpy_S" { DATATYPE H5T_STRING { STRSIZE 8; STRPAD H5T_STR_NULLPAD; CSET H5T_CSET_ASCII; CTYPE H5T_C_S1; } DATASPACE SIMPLE { ( 2, 2 ) / ( 2, 2 ) } DATA { (0,0): "20200101", "20200201", (1,0): "20200101", "20200301" } } } } netcdf test_str_list_ds { dimensions: phony_dim_0 = 2 ; phony_dim_1 = 2 ; variables: string NULLPAD(phony_dim_0, phony_dim_1) ; string NULLTERM(phony_dim_0, phony_dim_1) ; string numpy_O(phony_dim_0, phony_dim_1) ; string numpy_S(phony_dim_0, phony_dim_1) ; data: NULLPAD = "2020010120200201�4k�U", NIL, "2020010120200301 ", NIL ; NULLTERM = "20200101", NIL, "20200101", NIL ; numpy_O = "20200101", "20200201", "20200101", "20200301" ; numpy_S = "2020010120200201", NIL, "2020010120200301 ", NIL ; } <xarray.Dataset> Dimensions: (phony_dim_0: 2, phony_dim_1: 2) Dimensions without coordinates: phony_dim_0, phony_dim_1 Data variables: NULLPAD (phony_dim_0, phony_dim_1) |S8 b'20200101' ... b'20200301' NULLTERM (phony_dim_0, phony_dim_1) |S9 b'20200101' ... b'20200301' numpy_O (phony_dim_0, phony_dim_1) object '20200101' ... '20200301' numpy_S (phony_dim_0, phony_dim_1) |S8 b'20200101' ... b'20200301' ```

So here, netcdf-c/netcdf4-python will segfault for all variables beside numpy_O.

It looks like the only option to achieve this for datasets/variables is to use numpy opaque dtype.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Loading datasets of numpy string arrays leads to error and/or segfault 970619131
1011556328 https://github.com/pydata/xarray/issues/5706#issuecomment-1011556328 https://api.github.com/repos/pydata/xarray/issues/5706 IC_kwDOAMm_X848Sx_o scottstanie 8291800 2022-01-12T23:51:07Z 2022-01-12T23:53:01Z CONTRIBUTOR

sure! here it is:

bash $ h5dump test_str_list.h5 HDF5 "test_str_list.h5" { GROUP "/" { DATASET "pairs" { DATATYPE H5T_STRING { STRSIZE 8; STRPAD H5T_STR_NULLPAD; CSET H5T_CSET_ASCII; CTYPE H5T_C_S1; } DATASPACE SIMPLE { ( 2, 2 ) / ( 2, 2 ) } DATA { (0,0): "20200101", "20200201", (1,0): "20200101", "20200301" } } } }

(and just to include the specific traceback that hapened now, in case my versions are different from what I showed):

In [4]: import h5py ...: import xarray as xr ...: ...: with h5py.File("test_str_list.h5", "w") as hf: ...: hf["pairs"] = np.array([["20200101", "20200201"], ["20200101", "20200301"]]).astype("S") ...: ...: ds = xr.load_dataset("test_str_list.h5") /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/plugins.py:68: RuntimeWarning: Engine 'cfgrib' loading failed: /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/gribapi/_bindings.cpython-38-x86_64-linux-gnu.so: undefined symbol: codes_bufr_key_is_header warnings.warn(f"Engine {name!r} loading failed:\n{ex}", RuntimeWarning) /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/fsspec/implementations/local.py:29: FutureWarning: The default value of auto_mkdir=True has been deprecated and will be changed to auto_mkdir=False by default in a future release. warnings.warn( *** Error in `/home/scott/miniconda3/envs/mapping/bin/python': free(): invalid next size (fast): 0x00005564b64622a0 *** ======= Backtrace: ========= /lib64/libc.so.6(+0x81679)[0x7f56e752b679] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/netCDF4/../../../libnetcdf.so.18(nc_free_string+0x25)[0x7f54cf53d1a5] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/netCDF4/_netCDF4.cpython-38-x86_64-linux-gnu.so(+0xcf3c8)[0x7f54cf7313c8] /home/scott/miniconda3/envs/mapping/bin/python(PyCFunction_Call+0x54)[0x5564b397df44] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/netCDF4/_netCDF4.cpython-38-x86_64-linux-gnu.so(+0x224fd)[0x7f54cf6844fd] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/netCDF4/_netCDF4.cpython-38-x86_64-linux-gnu.so(+0x559d9)[0x7f54cf6b79d9] /home/scott/miniconda3/envs/mapping/bin/python(PyObject_GetItem+0x45)[0x5564b39d7935] /home/scott/miniconda3/envs/mapping/bin/python(+0x128e0b)[0x5564b397ae0b] /home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalFrameDefault+0x947)[0x5564b3a1ec77] /home/scott/miniconda3/envs/mapping/bin/python(+0x1b0736)[0x5564b3a02736] /home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalFrameDefault+0x947)[0x5564b3a1ec77] /home/scott/miniconda3/envs/mapping/bin/python(_PyFunction_Vectorcall+0x1a6)[0x5564b3a01fc6] /home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalFrameDefault+0x4e03)[0x5564b3a23133] /home/scott/miniconda3/envs/mapping/bin/python(_PyFunction_Vectorcall+0x1a6)[0x5564b3a01fc6] /home/scott/miniconda3/envs/mapping/bin/python(+0x1800cd)[0x5564b39d20cd] /home/scott/miniconda3/envs/mapping/bin/python(PyObject_GetItem+0x45)[0x5564b39d7935] /home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalFrameDefault+0xd53)[0x5564b3a1f083] /home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalCodeWithName+0x2c3)[0x5564b3a00db3] /home/scott/miniconda3/envs/mapping/bin/python(_PyFunction_Vectorcall+0x378)[0x5564b3a02198] /home/scott/miniconda3/envs/mapping/bin/python(+0x1b0841)[0x5564b3a02841] /home/scott/miniconda3/envs/mapping/bin/python(+0x12404d)[0x5564b397604d] /home/scott/miniconda3/envs/mapping/bin/python(_PyObject_CallFunction_SizeT+0x99)[0x5564b39761f9] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa11fd)[0x7f56dddfe1fd] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa54d7)[0x7f56dde024d7] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0x8a2d5)[0x7f56ddde72d5] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0x8adc4)[0x7f56ddde7dc4] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa559a)[0x7f56dde0259a] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa5ac9)[0x7f56dde02ac9] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0x13f2b7)[0x7f56dde9c2b7] /home/scott/miniconda3/envs/mapping/bin/python(+0x129082)[0x5564b397b082] /home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalFrameDefault+0x181e)[0x5564b3a1fb4e] /home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalCodeWithName+0x2c3)[0x5564b3a00db3] /home/scott/miniconda3/envs/mapping/bin/python(_PyFunction_Vectorcall+0x378)[0x5564b3a02198] /home/scott/miniconda3/envs/mapping/bin/python(+0x1b0841)[0x5564b3a02841] /home/scott/miniconda3/envs/mapping/bin/python(+0x12404d)[0x5564b397604d] /home/scott/miniconda3/envs/mapping/bin/python(_PyObject_CallFunction_SizeT+0x99)[0x5564b39761f9] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa11fd)[0x7f56dddfe1fd] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa54d7)[0x7f56dde024d7] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0x8a2d5)[0x7f56ddde72d5] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0x8adc4)[0x7f56ddde7dc4] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa559a)[0x7f56dde0259a] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa5ac9)[0x7f56dde02ac9] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0x13f2b7)[0x7f56dde9c2b7] /home/scott/miniconda3/envs/mapping/bin/python(+0x129082)[0x5564b397b082] /home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalFrameDefault+0x4e03)[0x5564b3a23133] /home/scott/miniconda3/envs/mapping/bin/python(_PyFunction_Vectorcall+0x1a6)[0x5564b3a01fc6] /home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalFrameDefault+0xa63)[0x5564b3a1ed93] /home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalCodeWithName+0x2c3)[0x5564b3a00db3] /home/scott/miniconda3/envs/mapping/bin/python(_PyFunction_Vectorcall+0x378)[0x5564b3a02198] /home/scott/miniconda3/envs/mapping/bin/python(+0x1b0841)[0x5564b3a02841] /home/scott/miniconda3/envs/mapping/bin/python(+0x12404d)[0x5564b397604d] /home/scott/miniconda3/envs/mapping/bin/python(_PyObject_CallFunction_SizeT+0x99)[0x5564b39761f9] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa11fd)[0x7f56dddfe1fd] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa54d7)[0x7f56dde024d7] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0x8a2d5)[0x7f56ddde72d5] /home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so Aborted (core dumped)

xr.show_versions

In [2]: xr.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.8.12 | packaged by conda-forge | (default, Oct 12 2021, 21:59:51) [GCC 9.4.0] python-bits: 64 OS: Linux OS-release: 3.10.0-1062.4.1.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.20.2 pandas: 1.1.0 numpy: 1.21.2 scipy: 1.5.3 netCDF4: 1.5.4 pydap: None h5netcdf: 0.11.0 h5py: 3.2.1 Nio: None zarr: 2.8.3 cftime: 1.2.1 nc_time_axis: None PseudoNetCDF: None rasterio: 1.2.6 cfgrib: None iris: None bottleneck: 1.3.2 dask: 2021.01.0 distributed: 2.20.0 matplotlib: 3.3.1 cartopy: 0.19.0.post1 seaborn: None numbagg: None fsspec: 0.6.3 cupy: 9.0.0 pint: 0.17 sparse: None setuptools: 50.3.2 pip: 21.2.4 conda: 4.8.4 pytest: 6.2.4 IPython: 7.18.1 sphinx: 4.0.2
{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Loading datasets of numpy string arrays leads to error and/or segfault 970619131
1011242728 https://github.com/pydata/xarray/issues/5706#issuecomment-1011242728 https://api.github.com/repos/pydata/xarray/issues/5706 IC_kwDOAMm_X848Rlbo kmuehlbauer 5821660 2022-01-12T16:43:33Z 2022-01-12T16:43:33Z MEMBER

@scottstanie Could you please provide the output of h5dump test_str_list.h5? I've a hunch but want to be sure. Also, what is the output with ncdump?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Loading datasets of numpy string arrays leads to error and/or segfault 970619131

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 15.323ms · About: xarray-datasette