issue_comments
1 row where issue = 956103236 and user = 165551 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Duck array compatibility meeting · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
924808439 | https://github.com/pydata/xarray/issues/5648#issuecomment-924808439 | https://api.github.com/repos/pydata/xarray/issues/5648 | IC_kwDOAMm_X843H3T3 | hodgestar 165551 | 2021-09-22T10:41:01Z | 2021-09-22T10:41:01Z | NONE | I'd like to attend on behalf of QuTiP. I'll likely mostly listen -- QuTiP is not directly affected in the way that xarray, Dask, cupy, etc are, but we're users of potentially all of these array types (and already explicitly support numpy, CuPy, and our own sparse array format) and we are facing similar issues of our own (i.e. users of QuTiP are asking us to develop a |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Duck array compatibility meeting 956103236 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1