issue_comments
4 rows where issue = 935062144 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- UserWarning when wrapping pint & dask arrays together · 4 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
872502631 | https://github.com/pydata/xarray/issues/5559#issuecomment-872502631 | https://api.github.com/repos/pydata/xarray/issues/5559 | MDEyOklzc3VlQ29tbWVudDg3MjUwMjYzMQ== | dcherian 2448579 | 2021-07-01T19:41:14Z | 2021-07-01T19:41:14Z | MEMBER |
Or |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
UserWarning when wrapping pint & dask arrays together 935062144 | |
872499933 | https://github.com/pydata/xarray/issues/5559#issuecomment-872499933 | https://api.github.com/repos/pydata/xarray/issues/5559 | MDEyOklzc3VlQ29tbWVudDg3MjQ5OTkzMw== | TomNicholas 35968931 | 2021-07-01T19:35:43Z | 2021-07-01T19:35:43Z | MEMBER | So this is actually an xarray problem not a dask/pint problem? And the solution would be to just call the method on the duck array without any kind of type checking first? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
UserWarning when wrapping pint & dask arrays together 935062144 | |
872477132 | https://github.com/pydata/xarray/issues/5559#issuecomment-872477132 | https://api.github.com/repos/pydata/xarray/issues/5559 | MDEyOklzc3VlQ29tbWVudDg3MjQ3NzEzMg== | dcherian 2448579 | 2021-07-01T18:56:41Z | 2021-07-01T18:59:27Z | MEMBER |
Yes that's correct. See https://github.com/pydata/xarray/blob/c472f8a4c79f872edb9dcd7825f786ecb9aff5c0/xarray/core/duck_array_ops.py#L49-L51 It may be time to update this method since we now depend on a minimum numpy version that supports NEP-18. cc @shoyer EDIT: You get there from |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
UserWarning when wrapping pint & dask arrays together 935062144 | |
872441814 | https://github.com/pydata/xarray/issues/5559#issuecomment-872441814 | https://api.github.com/repos/pydata/xarray/issues/5559 | MDEyOklzc3VlQ29tbWVudDg3MjQ0MTgxNA== | jthielen 3460034 | 2021-07-01T17:57:32Z | 2021-07-01T18:05:19Z | CONTRIBUTOR | Is it correct that xarray ends up calling ```python import dask.array as da da = xr.DataArray([1,2,3], attrs={'units': 'metres'}) chunked = da.chunk(1).pint.quantify() da.mean(chunked.variable._data) ``` Also, the Dask warning If so, I think this gets into a thorny issue with duck array handling in Dask. It was decided in https://github.com/dask/dask/pull/6393 that deliberately calling Dask array operations like If this all checks out, I believe this becomes a Dask issue to improve upcast type/duck Dask array handling. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
UserWarning when wrapping pint & dask arrays together 935062144 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 3