home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

2 rows where issue = 924676925 and user = 56541075 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • lthUniBonn · 2 ✖

issue 1

  • Nan/ changed values in output when only reading data, saving and reading again · 2 ✖

author_association 1

  • NONE 2
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
864374967 https://github.com/pydata/xarray/issues/5490#issuecomment-864374967 https://api.github.com/repos/pydata/xarray/issues/5490 MDEyOklzc3VlQ29tbWVudDg2NDM3NDk2Nw== lthUniBonn 56541075 2021-06-19T08:22:15Z 2021-06-19T08:28:04Z NONE

Probably the scaling and adding is carried out in float64, but then rounded down to float32. This refers to how xarray reads the netcdf (and not something to do with the original data), right?

Is there a way to avoid this by not scaling/adding in the first place? If only the integer values were read, selected by index and saved again this should then not happen anymore, right? I could try decode_cf=False for this...

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Nan/ changed values in output when only reading data, saving and reading again 924676925
863955559 https://github.com/pydata/xarray/issues/5490#issuecomment-863955559 https://api.github.com/repos/pydata/xarray/issues/5490 MDEyOklzc3VlQ29tbWVudDg2Mzk1NTU1OQ== lthUniBonn 56541075 2021-06-18T11:03:18Z 2021-06-18T11:03:53Z NONE

Yes, they are generated on a .25x.25 lat lon grid in europe, so these values match (when reading the original files there is no nan, which I think excludes this option)

The test is all q values are the same is not meant for the case where I even find nan, but where I don't see them. I should have included the output I get - see below e.q. for the last test I ran.

It say that both original and read back in are F32 - that's what confuses me. I also expected to see a difference in data type to be responsible, but at first glance here it does not seem to be the case.

Below that output I print a timespan of the original and the second dataset, where the values clearly differ - in the last few digits. I can also include the test, where it even returns nan at some places. The full testing code and data is in the link if you want to see that - or I can post it here. ``` original <xarray.Dataset> Dimensions: (level: 26, time: 1464) Coordinates: longitude float32 10.0 latitude float32 38.0 * level (level) int32 112 113 114 115 116 117 ... 132 133 134 135 136 137 * time (time) datetime64[ns] 2014-09-01 ... 2014-10-31T23:00:00 Data variables: t (time, level) float32 dask.array<chunksize=(720, 26), meta=np.ndarray> q (time, level) float32 dask.array<chunksize=(720, 26), meta=np.ndarray> u (time, level) float32 dask.array<chunksize=(720, 26), meta=np.ndarray> v (time, level) float32 dask.array<chunksize=(720, 26), meta=np.ndarray> Attributes: Conventions: CF-1.6 history: 2021-02-05 01:00:40 GMT by grib_to_netcdf-2.16.0: /opt/ecmw...

read back in <xarray.Dataset> Dimensions: (level: 26, time: 1464) Coordinates: longitude float32 ... latitude float32 ... * level (level) int32 112 113 114 115 116 117 ... 132 133 134 135 136 137 * time (time) datetime64[ns] 2014-09-01 ... 2014-10-31T23:00:00 Data variables: t (time, level) float32 ... q (time, level) float32 ... u (time, level) float32 ... v (time, level) float32 ... Attributes: Conventions: CF-1.6 history: 2021-02-05 01:00:40 GMT by grib_to_netcdf-2.16.0: /opt/ecmw...


test for nan - np.any(np.isnan(array)) original q: False t: False u: False v: False read back in q: False t: False u: False v: False


look at one of the problematic portions: (q.values[timespan] - values for same timespan original and read back in) original [0.01286593 0.01290165 0.01218289 0.01229404 0.01238789 0.0125237 0.01275251 0.01274316 0.01292717 0.01308822 0.01309219 0.01304683 0.01299834 0.01299749 0.01267057 0.01274089 0.01281064 0.01282141 0.01286848 0.01291271 0.01302868 0.01290676 0.01276612 0.01273976 0.01273635 0.01271169 0.01244998 0.01250867 0.01229999 0.01256708 0.01265356 0.01276471 0.01274259 0.01243155 0.01195124 0.01166572 0.01124779 0.01097304 0.01091747 0.01098779 0.01105896 0.01114317 0.01122823 0.01133569 0.01147207 0.01155231 0.01154834 0.01154579 0.01155486 0.01158009 0.0114715 0.01169464 0.01170598 0.01151034 0.01124751 0.01127246 0.01125374 0.01128862 0.01127643 0.0112631 0.01126225 0.01126594 0.01154182 0.01162574 0.01169833 0.01176354 0.01183301 0.01184066 0.01187781 0.01194756 0.01208564 0.01224102 0.01244346 0.01260706 0.01236549 0.01256538 0.0127528 0.01287415 0.01304286 0.01327876 0.01366919 0.01396406 0.0142683 0.01445004 0.01449626 0.01438228 0.01404204 0.01419486 0.01447329 0.01472309 0.01493943 0.01512514 0.01532986 0.01552691 0.01566074 0.01577302 0.01581669 0.015832 0.01564515 0.01568768] read back in [0.01286582 0.01290182 0.01218301 0.01229396 0.01238785 0.01252367 0.01275264 0.01274299 0.01292705 0.01308811 0.01309219 0.01304692 0.0129983 0.01299756 0.01267063 0.01274076 0.01281053 0.01282129 0.01286842 0.01291258 0.01302873 0.01290664 0.012766 0.01273965 0.01273631 0.01271182 0.01244982 0.01250883 0.0122999 0.01256709 0.01265355 0.01276488 0.01274262 0.01243164 0.01195107 0.0116657 0.01124785 0.01097287 0.01091757 0.01098771 0.01105896 0.0111432 0.01122818 0.0113358 0.01147199 0.01155215 0.01154844 0.01154584 0.01155474 0.01157998 0.01147162 0.01169465 0.01170615 0.01151021 0.01124748 0.01127234 0.01125379 0.01128867 0.01127642 0.01126306 0.01126232 0.01126603 0.01154175 0.01162562 0.01169836 0.01176367 0.01183306 0.01184049 0.01187797 0.01194773 0.01208578 0.0122409 0.01244352 0.01260717 0.01236559 0.01256523 0.01275264 0.01287398 0.01304283 0.01327885 0.01366924 0.01396389 0.01426819 0.01445002 0.01449641 0.01438211 0.01404219 0.01419471 0.0144734 0.01472315 0.0149395 0.01512505 0.01532989 0.01552694 0.01566091 0.01577298 0.01581677 0.01583198 0.01564532 0.01568763] timespan: 2014-10-04T08:00:00.000000000 2014-10-08T11:00:00.000000000 Test all q values same: False

```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Nan/ changed values in output when only reading data, saving and reading again 924676925

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 12.103ms · About: xarray-datasette