issue_comments
1 row where issue = 910844095 and user = 10137 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- xarray.open_rasterio · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
863119738 | https://github.com/pydata/xarray/issues/5434#issuecomment-863119738 | https://api.github.com/repos/pydata/xarray/issues/5434 | MDEyOklzc3VlQ29tbWVudDg2MzExOTczOA== | ghost 10137 | 2021-06-17T10:20:46Z | 2021-06-17T10:26:12Z | NONE | Sorry for late response. I was trying to read a big geotif file as follows. import xarray as xr xds = xr.open_rasterio(geotif_file) My task was to array indexing and to save output into disk. columns = [8,9,7,100,1050,......, 9000] rows = [18,19,17,1100,1105,......, 9100] data = xds.isel(x=xr.DataArray(columns), y=xr.DataArray(rows)) np.save('output.npy', data) Unfortunately, the performance in terms of time requirement seems quite unsatisfactory. When I saw docs on I look forward to see it as |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray.open_rasterio 910844095 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1