issue_comments
1 row where issue = 902009258 and user = 1217238 sorted by updated_at descending
This data as json, CSV (advanced)
issue 1
- Multi-scale datasets and custom indexes · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
852686461 | https://github.com/pydata/xarray/issues/5376#issuecomment-852686461 | https://api.github.com/repos/pydata/xarray/issues/5376 | MDEyOklzc3VlQ29tbWVudDg1MjY4NjQ2MQ== | shoyer 1217238 | 2021-06-02T03:25:31Z | 2021-06-02T03:25:31Z | MEMBER | I do think multi-scale datasets are common enough across different scientific fields (remote sensing, bio-imaging, simulation output, etc) that this could be worth considering. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Multi-scale datasets and custom indexes 902009258 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1