issue_comments
3 rows where issue = 882876804 and user = 56925856 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Dask-friendly nan check in xr.corr() and xr.cov() · 3 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
848612330 | https://github.com/pydata/xarray/pull/5284#issuecomment-848612330 | https://api.github.com/repos/pydata/xarray/issues/5284 | MDEyOklzc3VlQ29tbWVudDg0ODYxMjMzMA== | AndrewILWilliams 56925856 | 2021-05-26T09:19:50Z | 2021-05-26T09:19:50Z | CONTRIBUTOR | Hey both, I've added a test to check that dask doesn't compute when calling either @dcherian, regarding the |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Dask-friendly nan check in xr.corr() and xr.cov() 882876804 | |
838231568 | https://github.com/pydata/xarray/pull/5284#issuecomment-838231568 | https://api.github.com/repos/pydata/xarray/issues/5284 | MDEyOklzc3VlQ29tbWVudDgzODIzMTU2OA== | AndrewILWilliams 56925856 | 2021-05-11T10:28:08Z | 2021-05-12T20:45:00Z | CONTRIBUTOR | Thanks for that @dcherian ! I didn't know you could use print debugging on chunked operations like this! One thing actually: If I change ``` def _get_valid_values(da, other): da1, da2 = xr.align(da, other, join="outer", copy=False)
```
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Dask-friendly nan check in xr.corr() and xr.cov() 882876804 | |
837032429 | https://github.com/pydata/xarray/pull/5284#issuecomment-837032429 | https://api.github.com/repos/pydata/xarray/issues/5284 | MDEyOklzc3VlQ29tbWVudDgzNzAzMjQyOQ== | AndrewILWilliams 56925856 | 2021-05-10T17:44:29Z | 2021-05-10T17:44:29Z | CONTRIBUTOR | Hi @dcherian , just thinking about your suggestion for using ```python3 da_a = xr.DataArray( np.array([[1, 2, 3, 4], [1, 0.1, 0.2, 0.3], [2, 3.2, 0.6, 1.8]]), dims=("space", "time"), coords=[ ("space", ["IA", "IL", "IN"]), ("time", pd.date_range("2000-01-01", freq="1D", periods=4)), ], ).chunk({'time':1}) da_b = xr.DataArray( np.array([[0.2, 0.4, 0.6, 2], [15, 10, 5, 1], [1, 3.2, np.nan, 1.8]]), dims=("space", "time"), coords=[ ("space", ["IA", "IL", "IN"]), ("time", pd.date_range("2000-01-01", freq="1D", periods=4)), ], ).chunk({'time':1}) print(da_a)
print(da_b)
Define function to use in map_blocksdef _get_valid_values(da, other): da1, da2 = xr.align(da, other, join="inner", copy=False)
testoutp = da_a.map_blocks(_get_valid_values, args=[da_b]) print(outp.compute())
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Dask-friendly nan check in xr.corr() and xr.cov() 882876804 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1