issue_comments
1 row where issue = 869786882 and user = 4441338 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- sel(dim=slice(a,b,c)) only accepts integers for c, uses c as isel does · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 828355557 | https://github.com/pydata/xarray/issues/5228#issuecomment-828355557 | https://api.github.com/repos/pydata/xarray/issues/5228 | MDEyOklzc3VlQ29tbWVudDgyODM1NTU1Nw== | LunarLanding 4441338 | 2021-04-28T10:46:59Z | 2021-04-28T10:46:59Z | NONE | I think I should have not expected a simple slice to make the choices that are necessary for evenly sampling a possibly irregular index. Assuming most users won't, I'm closing this.
Below is what I'm using now.
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
sel(dim=slice(a,b,c)) only accepts integers for c, uses c as isel does 869786882 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1