issue_comments
1 row where issue = 864249974 and user = 1200058 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Make creating a MultiIndex in stack optional · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 825488224 | https://github.com/pydata/xarray/issues/5202#issuecomment-825488224 | https://api.github.com/repos/pydata/xarray/issues/5202 | MDEyOklzc3VlQ29tbWVudDgyNTQ4ODIyNA== | Hoeze 1200058 | 2021-04-23T08:21:44Z | 2021-04-23T08:22:34Z | NONE | It's a large problem when working with Dask/Zarr: - First, it loads all indices into memory - Then, it computes in a single thread the MultiIndex I had cases where stacking the dimensions took ~15 minutes while computing+saving the dataset was done in < 1min. |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Make creating a MultiIndex in stack optional 864249974 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1