issue_comments
2 rows where issue = 84127296 and user = 2443309 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: updated_at (date)
issue 1
- add average function · 2 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
218513335 | https://github.com/pydata/xarray/issues/422#issuecomment-218513335 | https://api.github.com/repos/pydata/xarray/issues/422 | MDEyOklzc3VlQ29tbWVudDIxODUxMzMzNQ== | jhamman 2443309 | 2016-05-11T16:26:55Z | 2016-05-11T16:26:55Z | MEMBER | @mathause - I would think you want the latter ( ``` Python
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
add average function 84127296 | |
218358372 | https://github.com/pydata/xarray/issues/422#issuecomment-218358372 | https://api.github.com/repos/pydata/xarray/issues/422 | MDEyOklzc3VlQ29tbWVudDIxODM1ODM3Mg== | jhamman 2443309 | 2016-05-11T04:24:05Z | 2016-05-11T04:24:05Z | MEMBER | @MaximilianR has suggested a ``` Python da.weighted(weights=ds.dim).mean() or maybeda.weighted(time=days_per_month(da.time)).mean() ``` I really like this idea, as does @shoyer. I'm going to close my PR in hopes of this becoming reality. |
{ "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
add average function 84127296 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1