issue_comments
5 rows where issue = 782943813 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- Poor performance of repr of large arrays, particularly jupyter repr · 5 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
766983346 | https://github.com/pydata/xarray/issues/4789#issuecomment-766983346 | https://api.github.com/repos/pydata/xarray/issues/4789 | MDEyOklzc3VlQ29tbWVudDc2Njk4MzM0Ng== | keewis 14808389 | 2021-01-25T17:33:19Z | 2021-01-26T21:59:20Z | MEMBER | that seems to be the main issue. With ```diff diff --git a/xarray/core/formatting.py b/xarray/core/formatting.py index 282620e3..f825ed85 100644 --- a/xarray/core/formatting.py +++ b/xarray/core/formatting.py @@ -300,9 +300,11 @@ def _summarize_coord_multiindex(coord, col_width, marker): def _summarize_coord_levels(coord, col_width, marker="-"):
+ indices = list(range(10)) + list(range(-10, 0))
+ subset = coord[indices]
return "\n".join(
summarize_variable(
- lname, coord.get_level_variable(lname), col_width, marker=marker
+ lname, subset.get_level_variable(lname), col_width, marker=marker
)
for lname in coord.level_names
)
|
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Poor performance of repr of large arrays, particularly jupyter repr 782943813 | |
767186998 | https://github.com/pydata/xarray/issues/4789#issuecomment-767186998 | https://api.github.com/repos/pydata/xarray/issues/4789 | MDEyOklzc3VlQ29tbWVudDc2NzE4Njk5OA== | max-sixty 5635139 | 2021-01-25T23:50:56Z | 2021-01-25T23:50:56Z | MEMBER | Yes great, I think that would be a great cut-through solution! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Poor performance of repr of large arrays, particularly jupyter repr 782943813 | |
766518276 | https://github.com/pydata/xarray/issues/4789#issuecomment-766518276 | https://api.github.com/repos/pydata/xarray/issues/4789 | MDEyOklzc3VlQ29tbWVudDc2NjUxODI3Ng== | max-sixty 5635139 | 2021-01-25T03:36:23Z | 2021-01-25T03:36:23Z | MEMBER | The rabbit hole went deeper than I expected. I need to sign off now, but leaving what I have in case someone else has some insight. Essentially, we call I think we can probably do something smarter to only call this on the first & last items in the MultiIndex. For reference, here's the output of line_profiler, a good profiler for figuring this sort of thing out: ``` %lprun -f formatting._summarize_coord_levels -f IndexVariable.get_level_variable -f pd.MultiIndex.get_level_values -f pd.MultiIndex._get_level_values coords_repr(da.coords) Total time: 1.91029 s File: /Users/maximilian/workspace/xarray/xarray/core/formatting.py Function: _summarize_coord_levels at line 302 Line # Hits Time Per Hit % Time Line Contents302 def _summarize_coord_levels(coord, col_width, marker="-"): 303 2 1910185.0 955092.5 100.0 return "\n".join( 304 summarize_variable( 305 lname, coord.get_level_variable(lname), col_width, marker=marker 306 ) 307 1 102.0 102.0 0.0 for lname in coord.level_names 308 ) Total time: 1.81777 s File: /Users/maximilian/workspace/xarray/xarray/core/variable.py Function: get_level_variable at line 2687 Line # Hits Time Per Hit % Time Line Contents2687 def get_level_variable(self, level): 2688 """Return a new IndexVariable from a given MultiIndex level.""" 2689 2 303.0 151.5 0.0 if self.level_names is None: 2690 raise ValueError("IndexVariable %r has no MultiIndex" % self.name) 2691 2 216.0 108.0 0.0 index = self.to_index() 2692 2 1817254.0 908627.0 100.0 return type(self)(self.dims, index.get_level_values(level)) Total time: 1.81709 s File: /usr/local/lib/python3.9/site-packages/pandas/core/indexes/multi.py Function: _get_level_values at line 1617 Line # Hits Time Per Hit % Time Line Contents1617 def _get_level_values(self, level, unique=False):
1618 """
1619 Return vector of label values for requested level,
1620 equal to the length of the index
1621 Total time: 1.81712 s File: /usr/local/lib/python3.9/site-packages/pandas/core/indexes/multi.py Function: get_level_values at line 1642 Line # Hits Time Per Hit % Time Line Contents1642 def get_level_values(self, level):
1643 """
1644 Return vector of label values for requested level.
1645 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Poor performance of repr of large arrays, particularly jupyter repr 782943813 | |
766504338 | https://github.com/pydata/xarray/issues/4789#issuecomment-766504338 | https://api.github.com/repos/pydata/xarray/issues/4789 | MDEyOklzc3VlQ29tbWVudDc2NjUwNDMzOA== | max-sixty 5635139 | 2021-01-25T02:46:40Z | 2021-01-25T02:46:40Z | MEMBER | One quick observation is that it's related to the MultiIndex — if we swap out the index for |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Poor performance of repr of large arrays, particularly jupyter repr 782943813 | |
758373462 | https://github.com/pydata/xarray/issues/4789#issuecomment-758373462 | https://api.github.com/repos/pydata/xarray/issues/4789 | MDEyOklzc3VlQ29tbWVudDc1ODM3MzQ2Mg== | rabernat 1197350 | 2021-01-12T03:36:26Z | 2021-01-12T03:36:26Z | MEMBER | I uncovered this issue with Dask's SVG in its |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Poor performance of repr of large arrays, particularly jupyter repr 782943813 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 3