issue_comments
2 rows where issue = 769382950 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- ⚠️ Nightly upstream-dev CI failed ⚠️ · 2 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
748535256 | https://github.com/pydata/xarray/issues/4703#issuecomment-748535256 | https://api.github.com/repos/pydata/xarray/issues/4703 | MDEyOklzc3VlQ29tbWVudDc0ODUzNTI1Ng== | keewis 14808389 | 2020-12-19T22:44:07Z | 2020-12-19T23:16:21Z | MEMBER | it seems the changes to |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
⚠️ Nightly upstream-dev CI failed ⚠️ 769382950 | |
747596156 | https://github.com/pydata/xarray/issues/4703#issuecomment-747596156 | https://api.github.com/repos/pydata/xarray/issues/4703 | MDEyOklzc3VlQ29tbWVudDc0NzU5NjE1Ng== | dcherian 2448579 | 2020-12-17T17:49:15Z | 2020-12-18T00:59:47Z | MEMBER | All 4 test failures are from dask. ``` ind = ('all-aggregate-766249a946efdef1b82b2fbb43c52b35',), coll = {}
and ``` /usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/blockwise.py:1456: in fuse_roots and not any(dependencies[dep] for dep in deps) # no need to fuse if 0 or 1 .0 = <set_iterator object at 0x7fd894067500>
Full error log:
```
=================================== FAILURES ===================================
_________________ test_argmin_max[x-True-min-True-False-str-1] _________________
dim_num = 1, dtype = <class 'str'>, contains_nan = False, dask = True
func = 'min', skipna = True, aggdim = 'x'
@pytest.mark.parametrize("dim_num", [1, 2])
@pytest.mark.parametrize("dtype", [float, int, np.float32, np.bool_, str])
@pytest.mark.parametrize("contains_nan", [True, False])
@pytest.mark.parametrize("dask", [False, True])
@pytest.mark.parametrize("func", ["min", "max"])
@pytest.mark.parametrize("skipna", [False, True])
@pytest.mark.parametrize("aggdim", ["x", "y"])
def test_argmin_max(dim_num, dtype, contains_nan, dask, func, skipna, aggdim):
# pandas-dev/pandas#16830, we do not check consistency with pandas but
# just make sure da[da.argmin()] == da.min()
if aggdim == "y" and dim_num < 2:
pytest.skip("dim not in this test")
if dask and not has_dask:
pytest.skip("requires dask")
if contains_nan:
if not skipna:
pytest.skip("numpy's argmin (not nanargmin) does not handle object-dtype")
if skipna and np.dtype(dtype).kind in "iufc":
pytest.skip("numpy's nanargmin raises ValueError for all nan axis")
da = construct_dataarray(dim_num, dtype, contains_nan=contains_nan, dask=dask)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "All-NaN slice")
actual = da.isel(
**{aggdim: getattr(da, "arg" + func)(dim=aggdim, skipna=skipna).compute()}
)
expected = getattr(da, func)(dim=aggdim, skipna=skipna)
> assert_allclose(
actual.drop_vars(list(actual.coords)),
expected.drop_vars(list(expected.coords)),
)
/home/runner/work/xarray/xarray/xarray/tests/test_duck_array_ops.py:497:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/home/runner/work/xarray/xarray/xarray/testing.py:139: in compat_variable
return a.dims == b.dims and (a._data is b._data or equiv(a.data, b.data))
/home/runner/work/xarray/xarray/xarray/testing.py:36: in _data_allclose_or_equiv
return duck_array_ops.array_equiv(arr1, arr2)
/home/runner/work/xarray/xarray/xarray/core/duck_array_ops.py:249: in array_equiv
return bool(flag_array.all())
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/array/core.py:1555: in __bool__
return bool(self.compute())
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/base.py:279: in compute
(result,) = compute(self, traverse=False, **kwargs)
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/base.py:567: in compute
results = schedule(dsk, keys, **kwargs)
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:527: in get_sync
return get_async(apply_sync, 1, dsk, keys, **kwargs)
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:503: in get_async
return nested_get(result, state["cache"])
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:299: in nested_get
return tuple([nested_get(i, coll) for i in ind])
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:299: in <listcomp>
return tuple([nested_get(i, coll) for i in ind])
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:299: in nested_get
return tuple([nested_get(i, coll) for i in ind])
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:299: in <listcomp>
return tuple([nested_get(i, coll) for i in ind])
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
ind = ('all-aggregate-16e252575441a0847c7885d6f7da3342',), coll = {}
def nested_get(ind, coll):
"""Get nested index from collection
Examples
--------
>>> nested_get(1, 'abc')
'b'
>>> nested_get([1, 0], 'abc')
('b', 'a')
>>> nested_get([[1, 0], [0, 1]], 'abc')
(('b', 'a'), ('a', 'b'))
"""
if isinstance(ind, list):
return tuple([nested_get(i, coll) for i in ind])
else:
> return coll[ind]
E KeyError: ('all-aggregate-16e252575441a0847c7885d6f7da3342',)
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:301: KeyError
_________________ test_argmin_max[x-True-max-True-False-str-1] _________________
dim_num = 1, dtype = <class 'str'>, contains_nan = False, dask = True
func = 'max', skipna = True, aggdim = 'x'
@pytest.mark.parametrize("dim_num", [1, 2])
@pytest.mark.parametrize("dtype", [float, int, np.float32, np.bool_, str])
@pytest.mark.parametrize("contains_nan", [True, False])
@pytest.mark.parametrize("dask", [False, True])
@pytest.mark.parametrize("func", ["min", "max"])
@pytest.mark.parametrize("skipna", [False, True])
@pytest.mark.parametrize("aggdim", ["x", "y"])
def test_argmin_max(dim_num, dtype, contains_nan, dask, func, skipna, aggdim):
# pandas-dev/pandas#16830, we do not check consistency with pandas but
# just make sure da[da.argmin()] == da.min()
if aggdim == "y" and dim_num < 2:
pytest.skip("dim not in this test")
if dask and not has_dask:
pytest.skip("requires dask")
if contains_nan:
if not skipna:
pytest.skip("numpy's argmin (not nanargmin) does not handle object-dtype")
if skipna and np.dtype(dtype).kind in "iufc":
pytest.skip("numpy's nanargmin raises ValueError for all nan axis")
da = construct_dataarray(dim_num, dtype, contains_nan=contains_nan, dask=dask)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "All-NaN slice")
actual = da.isel(
**{aggdim: getattr(da, "arg" + func)(dim=aggdim, skipna=skipna).compute()}
)
expected = getattr(da, func)(dim=aggdim, skipna=skipna)
> assert_allclose(
actual.drop_vars(list(actual.coords)),
expected.drop_vars(list(expected.coords)),
)
/home/runner/work/xarray/xarray/xarray/tests/test_duck_array_ops.py:497:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/home/runner/work/xarray/xarray/xarray/testing.py:139: in compat_variable
return a.dims == b.dims and (a._data is b._data or equiv(a.data, b.data))
/home/runner/work/xarray/xarray/xarray/testing.py:36: in _data_allclose_or_equiv
return duck_array_ops.array_equiv(arr1, arr2)
/home/runner/work/xarray/xarray/xarray/core/duck_array_ops.py:249: in array_equiv
return bool(flag_array.all())
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/array/core.py:1555: in __bool__
return bool(self.compute())
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/base.py:279: in compute
(result,) = compute(self, traverse=False, **kwargs)
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/base.py:567: in compute
results = schedule(dsk, keys, **kwargs)
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:527: in get_sync
return get_async(apply_sync, 1, dsk, keys, **kwargs)
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:503: in get_async
return nested_get(result, state["cache"])
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:299: in nested_get
return tuple([nested_get(i, coll) for i in ind])
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:299: in <listcomp>
return tuple([nested_get(i, coll) for i in ind])
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:299: in nested_get
return tuple([nested_get(i, coll) for i in ind])
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:299: in <listcomp>
return tuple([nested_get(i, coll) for i in ind])
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
ind = ('all-aggregate-766249a946efdef1b82b2fbb43c52b35',), coll = {}
def nested_get(ind, coll):
"""Get nested index from collection
Examples
--------
>>> nested_get(1, 'abc')
'b'
>>> nested_get([1, 0], 'abc')
('b', 'a')
>>> nested_get([[1, 0], [0, 1]], 'abc')
(('b', 'a'), ('a', 'b'))
"""
if isinstance(ind, list):
return tuple([nested_get(i, coll) for i in ind])
else:
> return coll[ind]
E KeyError: ('all-aggregate-766249a946efdef1b82b2fbb43c52b35',)
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:301: KeyError
_________________ TestVariableWithDask.test_getitem_with_mask __________________
self = <xarray.tests.test_variable.TestVariableWithDask object at 0x7fd86402ac10>
def test_getitem_with_mask(self):
v = self.cls(["x"], [0, 1, 2])
assert_identical(v._getitem_with_mask(-1), Variable((), np.nan))
assert_identical(
v._getitem_with_mask([0, -1, 1]), self.cls(["x"], [0, np.nan, 1])
)
> assert_identical(v._getitem_with_mask(slice(2)), self.cls(["x"], [0, 1]))
/home/runner/work/xarray/xarray/xarray/tests/test_variable.py:132:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/home/runner/work/xarray/xarray/xarray/core/variable.py:1799: in identical
return utils.dict_equiv(self.attrs, other.attrs) and self.equals(
/home/runner/work/xarray/xarray/xarray/core/variable.py:1778: in equals
self._data is other._data or equiv(self.data, other.data)
/home/runner/work/xarray/xarray/xarray/core/duck_array_ops.py:249: in array_equiv
return bool(flag_array.all())
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/array/core.py:1555: in __bool__
return bool(self.compute())
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/base.py:279: in compute
(result,) = compute(self, traverse=False, **kwargs)
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/base.py:567: in compute
results = schedule(dsk, keys, **kwargs)
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:527: in get_sync
return get_async(apply_sync, 1, dsk, keys, **kwargs)
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:503: in get_async
return nested_get(result, state["cache"])
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:299: in nested_get
return tuple([nested_get(i, coll) for i in ind])
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:299: in <listcomp>
return tuple([nested_get(i, coll) for i in ind])
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:299: in nested_get
return tuple([nested_get(i, coll) for i in ind])
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:299: in <listcomp>
return tuple([nested_get(i, coll) for i in ind])
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
ind = ('all-aggregate-513dc24870cea02fa21755f960f05d30',), coll = {}
def nested_get(ind, coll):
"""Get nested index from collection
Examples
--------
>>> nested_get(1, 'abc')
'b'
>>> nested_get([1, 0], 'abc')
('b', 'a')
>>> nested_get([[1, 0], [0, 1]], 'abc')
(('b', 'a'), ('a', 'b'))
"""
if isinstance(ind, list):
return tuple([nested_get(i, coll) for i in ind])
else:
> return coll[ind]
E KeyError: ('all-aggregate-513dc24870cea02fa21755f960f05d30',)
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/local.py:301: KeyError
___________________ TestVariableWithDask.test_real_and_imag ____________________
self = <xarray.tests.test_variable.TestVariableWithDask object at 0x7fd856b4a8b0>
def test_real_and_imag(self):
v = self.cls("x", np.arange(3) - 1j * np.arange(3), {"foo": "bar"})
expected_re = self.cls("x", np.arange(3), {"foo": "bar"})
> assert_identical(v.real, expected_re)
/home/runner/work/xarray/xarray/xarray/tests/test_variable.py:580:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/home/runner/work/xarray/xarray/xarray/core/variable.py:1799: in identical
return utils.dict_equiv(self.attrs, other.attrs) and self.equals(
/home/runner/work/xarray/xarray/xarray/core/variable.py:1778: in equals
self._data is other._data or equiv(self.data, other.data)
/home/runner/work/xarray/xarray/xarray/core/duck_array_ops.py:249: in array_equiv
return bool(flag_array.all())
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/array/core.py:1555: in __bool__
return bool(self.compute())
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/base.py:279: in compute
(result,) = compute(self, traverse=False, **kwargs)
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/base.py:561: in compute
dsk = collections_to_dsk(collections, optimize_graph, **kwargs)
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/base.py:332: in collections_to_dsk
_opt = opt(dsk, keys, **kwargs)
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/array/optimization.py:47: in optimize
dsk = fuse_roots(dsk, keys=keys)
/usr/share/miniconda/envs/xarray-tests/lib/python3.8/site-packages/dask/blockwise.py:1456: in fuse_roots
and not any(dependencies[dep] for dep in deps) # no need to fuse if 0 or 1
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.0 = <set_iterator object at 0x7fd894067500>
> and not any(dependencies[dep] for dep in deps) # no need to fuse if 0 or 1
and all(len(dependents[dep]) == 1 for dep in deps)
and all(layer.annotations == graph.layers[dep].annotations for dep in deps)
):
E KeyError: 'blockwise-create-zeros-83b321c493c9e89ba5406bf312d2ccc3'
```
PS: Great work with this feature! |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
⚠️ Nightly upstream-dev CI failed ⚠️ 769382950 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 2