home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

5 rows where issue = 758606082 and user = 29051639 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • AyrtonB · 5 ✖

issue 1

  • xr.DataArray.from_dask_dataframe feature · 5 ✖

author_association 1

  • CONTRIBUTOR 5
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
797555413 https://github.com/pydata/xarray/pull/4659#issuecomment-797555413 https://api.github.com/repos/pydata/xarray/issues/4659 MDEyOklzc3VlQ29tbWVudDc5NzU1NTQxMw== AyrtonB 29051639 2021-03-12T15:17:16Z 2021-03-12T15:17:16Z CONTRIBUTOR

From what I can gather there are more serious back-end considerations needed before this can be progressed.

Personally, I've been monkey-patching this code in which has solved my particular use-case, hopefully it's helpful for yours.

```python import xarray as xr import pandas as pd import numpy as np

import dask.dataframe as dd from dask.distributed import Client

import numcodecs from types import ModuleType from datetime import timedelta

from dask.dataframe.core import DataFrame as ddf from numbers import Number from typing import Any, Union, Sequence, Tuple, Mapping, Hashable, Dict, Optional, Set

from xarray.core import dtypes, groupby, rolling, resample, weighted, utils# from xarray.core.accessor_dt import CombinedDatetimelikeAccessor from xarray.core.variable import Variable, IndexVariable from xarray.core.merge import PANDAS_TYPES from xarray.core.variable import NON_NUMPY_SUPPORTED_ARRAY_TYPES, IS_NEP18_ACTIVE, _maybe_wrap_data, _possibly_convert_objects from xarray.core.dataarray import _check_data_shape, _infer_coords_and_dims, _extract_indexes_from_coords from xarray.core.common import ImplementsDatasetReduce, DataWithCoords

def as_compatible_data(data, fastpath=False): """Prepare and wrap data to put in a Variable. - If data does not have the necessary attributes, convert it to ndarray. - If data has dtype=datetime64, ensure that it has ns precision. If it's a pandas.Timestamp, convert it to datetime64. - If data is already a pandas or xarray object (other than an Index), just use the values. Finally, wrap it up with an adapter if necessary. """ if fastpath and getattr(data, "ndim", 0) > 0: # can't use fastpath (yet) for scalars return _maybe_wrap_data(data)

# *** Start of monkey-patch changes ***
if isinstance(data, (ddf,)):
    return data.to_dask_array(lengths=True)
# *** End of monkey-patch changes ***

if isinstance(data, Variable):
    return data.data

if isinstance(data, NON_NUMPY_SUPPORTED_ARRAY_TYPES):
    return _maybe_wrap_data(data)
if isinstance(data, tuple):
    data = utils.to_0d_object_array(data)
if isinstance(data, pd.Timestamp):
    # TODO: convert, handle datetime objects, too
    data = np.datetime64(data.value, "ns")
if isinstance(data, timedelta):
    data = np.timedelta64(getattr(data, "value", data), "ns")
# we don't want nested self-described arrays
data = getattr(data, "values", data)
if isinstance(data, np.ma.MaskedArray):
    mask = np.ma.getmaskarray(data)
    if mask.any():
        dtype, fill_value = dtypes.maybe_promote(data.dtype)
        data = np.asarray(data, dtype=dtype)
        data[mask] = fill_value
    else:
        data = np.asarray(data)
if not isinstance(data, np.ndarray):
    if hasattr(data, "__array_function__"):
        if IS_NEP18_ACTIVE:
            return data
        else:
            raise TypeError(
                "Got an NumPy-like array type providing the "
                "__array_function__ protocol but NEP18 is not enabled. "
                "Check that numpy >= v1.16 and that the environment "
                'variable "NUMPY_EXPERIMENTAL_ARRAY_FUNCTION" is set to '
                '"1"'
            )
# validate whether the data is valid data types.
data = np.asarray(data)
if isinstance(data, np.ndarray):
    if data.dtype.kind == "O":
        data = _possibly_convert_objects(data)
    elif data.dtype.kind == "M":
        data = _possibly_convert_objects(data)
    elif data.dtype.kind == "m":
        data = _possibly_convert_objects(data)

return _maybe_wrap_data(data)

xr.core.variable.as_compatible_data = as_compatible_data

class DataArray(xr.core.dataarray.DataArray):

_cache: Dict[str, Any]
_coords: Dict[Any, Variable]
_indexes: Optional[Dict[Hashable, pd.Index]]
_name: Optional[Hashable]
_variable: Variable

__slots__ = (
    "_cache",
    "_coords",
    "_file_obj",
    "_indexes",
    "_name",
    "_variable"
)

_groupby_cls = groupby.DataArrayGroupBy
_rolling_cls = rolling.DataArrayRolling
_coarsen_cls = rolling.DataArrayCoarsen
_resample_cls = resample.DataArrayResample
_weighted_cls = weighted.DataArrayWeighted

dt = utils.UncachedAccessor(CombinedDatetimelikeAccessor)

def __init__(
    self,
    data: Any = dtypes.NA,
    coords: Union[Sequence[Tuple], Mapping[Hashable, Any], None] = None,
    dims: Union[Hashable, Sequence[Hashable], None] = None,
    name: Hashable = None,
    attrs: Mapping = None,
    # internal parameters
    indexes: Dict[Hashable, pd.Index] = None,
    fastpath: bool = False,
):
    if fastpath:
        variable = data
        assert dims is None
        assert attrs is None
    else:
        # try to fill in arguments from data if they weren't supplied
        if coords is None:

            if isinstance(data, DataArray):
                coords = data.coords
            elif isinstance(data, pd.Series):
                coords = [data.index]
            elif isinstance(data, pd.DataFrame):
                coords = [data.index, data.columns]
            elif isinstance(data, (pd.Index, IndexVariable)):
                coords = [data]
            elif isinstance(data, pdcompat.Panel):
                coords = [data.items, data.major_axis, data.minor_axis]

        if dims is None:
            dims = getattr(data, "dims", getattr(coords, "dims", None))
        if name is None:
            name = getattr(data, "name", None)
        if attrs is None and not isinstance(data, PANDAS_TYPES):
            attrs = getattr(data, "attrs", None)

        # *** Start of monkey-patch changes ***
        def compute_delayed_tuple_elements(tuple_):
            tuple_ = tuple(
                [
                    elem.compute() if hasattr(elem, "compute") else elem
                    for elem in tuple_
                ]
            )

            return tuple_

        shape = compute_delayed_tuple_elements(data.shape)
        coords = compute_delayed_tuple_elements(coords)

        data = _check_data_shape(data, coords, dims)
        data = as_compatible_data(data)
        coords, dims = _infer_coords_and_dims(shape, coords, dims)
        # *** End of monkey-patch changes ***

        variable = Variable(dims, data, attrs, fastpath=True)
        indexes = dict(
            _extract_indexes_from_coords(coords)
        )  # needed for to_dataset

    # These fully describe a DataArray
    self._variable = variable
    assert isinstance(coords, dict)
    self._coords = coords
    self._name = name

    # TODO(shoyer): document this argument, once it becomes part of the
    # public interface.
    self._indexes = indexes

    self._file_obj = None

@classmethod
def from_dask_dataframe(cls, ddf, index_name: str = "", columns_name: str = ""):
    """Convert a pandas.DataFrame into an xarray.DataArray
    This method will produce a DataArray from a Dask DataFrame.
    Dimensions are loaded into memory but the data itself remains
    a Dask Array. The dataframe you pass can contain only one data-type.
    Parameters
    ----------
    ddf: DataFrame
        Dask DataFrame from which to copy data and indices.
    index_name: str
        Name of the dimension that will be created from the index
    columns_name: str
        Name of the dimension that will be created from the columns
    Returns
    -------
    New DataArray.
    See also
    --------
    xarray.DataSet.from_dataframe
    xarray.DataArray.from_series
    pandas.DataFrame.to_xarray
    """
    assert len(set(ddf.dtypes)) == 1, "Each variable can include only one data-type"

    def extract_dim_name(df, dim="index"):
        if getattr(ddf, dim).name is None:
            getattr(ddf, dim).name = dim

        dim_name = getattr(ddf, dim).name

        return dim_name

    if index_name == "":
        index_name = extract_dim_name(ddf, "index")
    if columns_name == "":
        columns_name = extract_dim_name(ddf, "columns")

    dims = dict.fromkeys([index_name, columns_name], df.shape)
    da = cls(ddf, coords=[ddf.index, ddf.columns], dims=dims)

    return da

xr.core.dataarray.DataArray = DataArray xr.DataArray = DataArray

def _maybe_chunk( name, var, chunks=None, token=None, lock=None, name_prefix="xarray-", overwrite_encoded_chunks=False, ): from dask.base import tokenize

if chunks is not None:
    chunks = {dim: chunks[dim] for dim in var.dims if dim in chunks}
if var.ndim:
    # when rechunking by different amounts, make sure dask names change
    # by provinding chunks as an input to tokenize.
    # subtle bugs result otherwise. see GH3350
    token2 = tokenize(name, token if token else var._data, chunks)
    name2 = f"{name_prefix}{name}-{token2}"
    var = var.chunk(chunks, name=name2, lock=lock)

    if overwrite_encoded_chunks and var.chunks is not None:
        var.encoding["chunks"] = tuple(x[0] for x in var.chunks)
    return var
else:
    return var

class Dataset(xr.Dataset): """A multi-dimensional, in memory, array database.

A dataset resembles an in-memory representation of a NetCDF file,
and consists of variables, coordinates and attributes which
together form a self describing dataset.

Dataset implements the mapping interface with keys given by variable
names and values given by DataArray objects for each variable name.

One dimensional variables with name equal to their dimension are
index coordinates used for label based indexing.

To load data from a file or file-like object, use the `open_dataset`
function.

Parameters
----------
data_vars : dict-like, optional
    A mapping from variable names to :py:class:`~xarray.DataArray`
    objects, :py:class:`~xarray.Variable` objects or to tuples of
    the form ``(dims, data[, attrs])`` which can be used as
    arguments to create a new ``Variable``. Each dimension must
    have the same length in all variables in which it appears.

    The following notations are accepted:

    - mapping {var name: DataArray}
    - mapping {var name: Variable}
    - mapping {var name: (dimension name, array-like)}
    - mapping {var name: (tuple of dimension names, array-like)}
    - mapping {dimension name: array-like}
      (it will be automatically moved to coords, see below)

    Each dimension must have the same length in all variables in
    which it appears.
coords : dict-like, optional
    Another mapping in similar form as the `data_vars` argument,
    except the each item is saved on the dataset as a "coordinate".
    These variables have an associated meaning: they describe
    constant/fixed/independent quantities, unlike the
    varying/measured/dependent quantities that belong in
    `variables`. Coordinates values may be given by 1-dimensional
    arrays or scalars, in which case `dims` do not need to be
    supplied: 1D arrays will be assumed to give index values along
    the dimension with the same name.

    The following notations are accepted:

    - mapping {coord name: DataArray}
    - mapping {coord name: Variable}
    - mapping {coord name: (dimension name, array-like)}
    - mapping {coord name: (tuple of dimension names, array-like)}
    - mapping {dimension name: array-like}
      (the dimension name is implicitly set to be the same as the
      coord name)

    The last notation implies that the coord name is the same as
    the dimension name.

attrs : dict-like, optional
    Global attributes to save on this dataset.

Examples
--------
Create data:

>>> np.random.seed(0)
>>> temperature = 15 + 8 * np.random.randn(2, 2, 3)
>>> precipitation = 10 * np.random.rand(2, 2, 3)
>>> lon = [[-99.83, -99.32], [-99.79, -99.23]]
>>> lat = [[42.25, 42.21], [42.63, 42.59]]
>>> time = pd.date_range("2014-09-06", periods=3)
>>> reference_time = pd.Timestamp("2014-09-05")

Initialize a dataset with multiple dimensions:

>>> ds = xr.Dataset(
...     data_vars=dict(
...         temperature=(["x", "y", "time"], temperature),
...         precipitation=(["x", "y", "time"], precipitation),
...     ),
...     coords=dict(
...         lon=(["x", "y"], lon),
...         lat=(["x", "y"], lat),
...         time=time,
...         reference_time=reference_time,
...     ),
...     attrs=dict(description="Weather related data."),
... )
>>> ds
<xarray.Dataset>
Dimensions:         (time: 3, x: 2, y: 2)
Coordinates:
    lon             (x, y) float64 -99.83 -99.32 -99.79 -99.23
    lat             (x, y) float64 42.25 42.21 42.63 42.59
  * time            (time) datetime64[ns] 2014-09-06 2014-09-07 2014-09-08
    reference_time  datetime64[ns] 2014-09-05
Dimensions without coordinates: x, y
Data variables:
    temperature     (x, y, time) float64 29.11 18.2 22.83 ... 18.28 16.15 26.63
    precipitation   (x, y, time) float64 5.68 9.256 0.7104 ... 7.992 4.615 7.805
Attributes:
    description:  Weather related data.

Find out where the coldest temperature was and what values the
other variables had:

>>> ds.isel(ds.temperature.argmin(...))
<xarray.Dataset>
Dimensions:         ()
Coordinates:
    lon             float64 -99.32
    lat             float64 42.21
    time            datetime64[ns] 2014-09-08
    reference_time  datetime64[ns] 2014-09-05
Data variables:
    temperature     float64 7.182
    precipitation   float64 8.326
Attributes:
    description:  Weather related data.
"""

__slots__ = ['foo']

def __init__(self, *args, **kwargs):
    super().__init__(*args, **kwargs)

def chunk(
    self,
    chunks: Union[None, Number, str, Mapping[Hashable, Union[None, Number, str, Tuple[Number, ...]]],] = None,
    name_prefix: str = "xarray-",
    token: str = None,
    lock: bool = False,
) -> "Dataset":
    """Coerce all arrays in this dataset into dask arrays with the given
    chunks.

    Non-dask arrays in this dataset will be converted to dask arrays. Dask
    arrays will be rechunked to the given chunk sizes.

    If neither chunks is not provided for one or more dimensions, chunk
    sizes along that dimension will not be updated; non-dask arrays will be
    converted into dask arrays with a single block.

    Parameters
    ----------
    chunks : int, 'auto' or mapping, optional
        Chunk sizes along each dimension, e.g., ``5`` or
        ``{"x": 5, "y": 5}``.
    name_prefix : str, optional
        Prefix for the name of any new dask arrays.
    token : str, optional
        Token uniquely identifying this dataset.
    lock : optional
        Passed on to :py:func:`dask.array.from_array`, if the array is not
        already as dask array.

    Returns
    -------
    chunked : xarray.Dataset
    """

    if isinstance(chunks, (Number, str)):
        chunks = dict.fromkeys(self.dims, chunks)

    if isinstance(chunks, (tuple, list)):
        chunks = dict(zip(self.dims, chunks))

    if chunks is not None:
        bad_dims = chunks.keys() - self.dims.keys()
        if bad_dims:
            raise ValueError("some chunks keys are not dimensions on this " "object: %s" % bad_dims)

    variables = {k: _maybe_chunk(k, v, chunks, token, lock, name_prefix) for k, v in self.variables.items()}
    return self._replace(variables)

xr.core.dataarray.Dataset = Dataset xr.Dataset = Dataset ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xr.DataArray.from_dask_dataframe feature 758606082
740032261 https://github.com/pydata/xarray/pull/4659#issuecomment-740032261 https://api.github.com/repos/pydata/xarray/issues/4659 MDEyOklzc3VlQ29tbWVudDc0MDAzMjI2MQ== AyrtonB 29051639 2020-12-07T16:36:36Z 2020-12-07T16:36:36Z CONTRIBUTOR

I've added dask_dataframe_type = (dask.dataframe.core.DataFrame,) to pycompat but now see: ImportError: cannot import name 'dask_dataframe_type' despite it being in there

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xr.DataArray.from_dask_dataframe feature 758606082
740020080 https://github.com/pydata/xarray/pull/4659#issuecomment-740020080 https://api.github.com/repos/pydata/xarray/issues/4659 MDEyOklzc3VlQ29tbWVudDc0MDAyMDA4MA== AyrtonB 29051639 2020-12-07T16:17:25Z 2020-12-07T16:17:25Z CONTRIBUTOR

That makes sense, thanks @keewis

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xr.DataArray.from_dask_dataframe feature 758606082
740002632 https://github.com/pydata/xarray/pull/4659#issuecomment-740002632 https://api.github.com/repos/pydata/xarray/issues/4659 MDEyOklzc3VlQ29tbWVudDc0MDAwMjYzMg== AyrtonB 29051639 2020-12-07T15:49:00Z 2020-12-07T15:49:00Z CONTRIBUTOR

Thanks, yes I need to load the library for type-hinting and type checks.

When you say dask_compat is that the same as dask_array_compat? How would I use them instead of Dask, could I use say from dask_compat.dataframe.core import DataFrame as ddf instead of from dask.dataframe.core import DataFrame as ddf?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xr.DataArray.from_dask_dataframe feature 758606082
739988806 https://github.com/pydata/xarray/pull/4659#issuecomment-739988806 https://api.github.com/repos/pydata/xarray/issues/4659 MDEyOklzc3VlQ29tbWVudDczOTk4ODgwNg== AyrtonB 29051639 2020-12-07T15:27:10Z 2020-12-07T15:27:10Z CONTRIBUTOR

During testing I'm currently encountering the issue: ModuleNotFoundError: No module named 'dask'

How should testing of dask DataArrays be approached?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xr.DataArray.from_dask_dataframe feature 758606082

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 13.756ms · About: xarray-datasette