issue_comments
5 rows where issue = 758606082 and user = 29051639 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- xr.DataArray.from_dask_dataframe feature · 5 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
797555413 | https://github.com/pydata/xarray/pull/4659#issuecomment-797555413 | https://api.github.com/repos/pydata/xarray/issues/4659 | MDEyOklzc3VlQ29tbWVudDc5NzU1NTQxMw== | AyrtonB 29051639 | 2021-03-12T15:17:16Z | 2021-03-12T15:17:16Z | CONTRIBUTOR | From what I can gather there are more serious back-end considerations needed before this can be progressed. Personally, I've been monkey-patching this code in which has solved my particular use-case, hopefully it's helpful for yours. ```python import xarray as xr import pandas as pd import numpy as np import dask.dataframe as dd from dask.distributed import Client import numcodecs from types import ModuleType from datetime import timedelta from dask.dataframe.core import DataFrame as ddf from numbers import Number from typing import Any, Union, Sequence, Tuple, Mapping, Hashable, Dict, Optional, Set from xarray.core import dtypes, groupby, rolling, resample, weighted, utils# from xarray.core.accessor_dt import CombinedDatetimelikeAccessor from xarray.core.variable import Variable, IndexVariable from xarray.core.merge import PANDAS_TYPES from xarray.core.variable import NON_NUMPY_SUPPORTED_ARRAY_TYPES, IS_NEP18_ACTIVE, _maybe_wrap_data, _possibly_convert_objects from xarray.core.dataarray import _check_data_shape, _infer_coords_and_dims, _extract_indexes_from_coords from xarray.core.common import ImplementsDatasetReduce, DataWithCoords def as_compatible_data(data, fastpath=False): """Prepare and wrap data to put in a Variable. - If data does not have the necessary attributes, convert it to ndarray. - If data has dtype=datetime64, ensure that it has ns precision. If it's a pandas.Timestamp, convert it to datetime64. - If data is already a pandas or xarray object (other than an Index), just use the values. Finally, wrap it up with an adapter if necessary. """ if fastpath and getattr(data, "ndim", 0) > 0: # can't use fastpath (yet) for scalars return _maybe_wrap_data(data)
xr.core.variable.as_compatible_data = as_compatible_data class DataArray(xr.core.dataarray.DataArray):
xr.core.dataarray.DataArray = DataArray xr.DataArray = DataArray def _maybe_chunk( name, var, chunks=None, token=None, lock=None, name_prefix="xarray-", overwrite_encoded_chunks=False, ): from dask.base import tokenize
class Dataset(xr.Dataset): """A multi-dimensional, in memory, array database.
xr.core.dataarray.Dataset = Dataset xr.Dataset = Dataset ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xr.DataArray.from_dask_dataframe feature 758606082 | |
740032261 | https://github.com/pydata/xarray/pull/4659#issuecomment-740032261 | https://api.github.com/repos/pydata/xarray/issues/4659 | MDEyOklzc3VlQ29tbWVudDc0MDAzMjI2MQ== | AyrtonB 29051639 | 2020-12-07T16:36:36Z | 2020-12-07T16:36:36Z | CONTRIBUTOR | I've added |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xr.DataArray.from_dask_dataframe feature 758606082 | |
740020080 | https://github.com/pydata/xarray/pull/4659#issuecomment-740020080 | https://api.github.com/repos/pydata/xarray/issues/4659 | MDEyOklzc3VlQ29tbWVudDc0MDAyMDA4MA== | AyrtonB 29051639 | 2020-12-07T16:17:25Z | 2020-12-07T16:17:25Z | CONTRIBUTOR | That makes sense, thanks @keewis |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xr.DataArray.from_dask_dataframe feature 758606082 | |
740002632 | https://github.com/pydata/xarray/pull/4659#issuecomment-740002632 | https://api.github.com/repos/pydata/xarray/issues/4659 | MDEyOklzc3VlQ29tbWVudDc0MDAwMjYzMg== | AyrtonB 29051639 | 2020-12-07T15:49:00Z | 2020-12-07T15:49:00Z | CONTRIBUTOR | Thanks, yes I need to load the library for type-hinting and type checks. When you say |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xr.DataArray.from_dask_dataframe feature 758606082 | |
739988806 | https://github.com/pydata/xarray/pull/4659#issuecomment-739988806 | https://api.github.com/repos/pydata/xarray/issues/4659 | MDEyOklzc3VlQ29tbWVudDczOTk4ODgwNg== | AyrtonB 29051639 | 2020-12-07T15:27:10Z | 2020-12-07T15:27:10Z | CONTRIBUTOR | During testing I'm currently encountering the issue: How should testing of dask DataArrays be approached? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xr.DataArray.from_dask_dataframe feature 758606082 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1