issue_comments
1 row where issue = 758606082 and user = 1217238 sorted by updated_at descending
This data as json, CSV (advanced)
These facets timed out: author_association, issue
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 824167488 | https://github.com/pydata/xarray/pull/4659#issuecomment-824167488 | https://api.github.com/repos/pydata/xarray/issues/4659 | MDEyOklzc3VlQ29tbWVudDgyNDE2NzQ4OA== | shoyer 1217238 | 2021-04-21T15:47:56Z | 2021-04-21T15:47:56Z | MEMBER | My main concern is really just if anybody will find this function useful in its current state, with all of the serious performance limitations. I expect conversion from dask data frames to xarray will be much more useful when we support out of core indexing, or can unstuck multiple columns into multidimensional arrays. |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xr.DataArray.from_dask_dataframe feature 758606082 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1