issue_comments
5 rows where issue = 662982199 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- Parallel tasks on subsets of a dask array wrapped in an xarray Dataset · 5 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 662563406 | https://github.com/pydata/xarray/issues/4241#issuecomment-662563406 | https://api.github.com/repos/pydata/xarray/issues/4241 | MDEyOklzc3VlQ29tbWVudDY2MjU2MzQwNg== | maximemorariu 41797673 | 2020-07-22T16:45:42Z | 2020-07-22T16:45:42Z | NONE |
Thanks for confirming and pointing me to rechunker, that looks nice. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Parallel tasks on subsets of a dask array wrapped in an xarray Dataset 662982199 | |
| 662517426 | https://github.com/pydata/xarray/issues/4241#issuecomment-662517426 | https://api.github.com/repos/pydata/xarray/issues/4241 | MDEyOklzc3VlQ29tbWVudDY2MjUxNzQyNg== | rabernat 1197350 | 2020-07-22T15:22:51Z | 2020-07-22T15:22:51Z | MEMBER |
This is a fundamental problem that is rather hard to solve without creating a copy of the data. We just released the rechunker package, which makes it easy to create a copy of your data with a different chunking scheme (e.g contiguous in time, chunked in space). If you have enough disk space to store a copy, this might be a good solution. |
{
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Parallel tasks on subsets of a dask array wrapped in an xarray Dataset 662982199 | |
| 662512964 | https://github.com/pydata/xarray/issues/4241#issuecomment-662512964 | https://api.github.com/repos/pydata/xarray/issues/4241 | MDEyOklzc3VlQ29tbWVudDY2MjUxMjk2NA== | dcherian 2448579 | 2020-07-22T15:14:53Z | 2020-07-22T15:14:53Z | MEMBER | You could try dask's |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Parallel tasks on subsets of a dask array wrapped in an xarray Dataset 662982199 | |
| 662509778 | https://github.com/pydata/xarray/issues/4241#issuecomment-662509778 | https://api.github.com/repos/pydata/xarray/issues/4241 | MDEyOklzc3VlQ29tbWVudDY2MjUwOTc3OA== | maximemorariu 41797673 | 2020-07-22T15:09:24Z | 2020-07-22T15:09:24Z | NONE | Thanks for your answer. Yes I looked at |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Parallel tasks on subsets of a dask array wrapped in an xarray Dataset 662982199 | |
| 661847133 | https://github.com/pydata/xarray/issues/4241#issuecomment-661847133 | https://api.github.com/repos/pydata/xarray/issues/4241 | MDEyOklzc3VlQ29tbWVudDY2MTg0NzEzMw== | keewis 14808389 | 2020-07-21T13:02:20Z | 2020-07-21T13:03:52Z | MEMBER |
did you look at apply_ufunc (examples) and map_blocks? Functions applied with |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Parallel tasks on subsets of a dask array wrapped in an xarray Dataset 662982199 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 4