issue_comments
2 rows where issue = 651945063 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Chunking causes unrelated non-dimension coordinate to become a dask array · 2 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1181905249 | https://github.com/pydata/xarray/issues/4205#issuecomment-1181905249 | https://api.github.com/repos/pydata/xarray/issues/4205 | IC_kwDOAMm_X85GcnFh | dcherian 2448579 | 2022-07-12T15:25:05Z | 2022-07-12T15:25:05Z | MEMBER | It makes sense to me that chunking along a dimension @shoyer what do you think |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Chunking causes unrelated non-dimension coordinate to become a dask array 651945063 | |
1176645772 | https://github.com/pydata/xarray/issues/4205#issuecomment-1176645772 | https://api.github.com/repos/pydata/xarray/issues/4205 | IC_kwDOAMm_X85GIjCM | aulemahal 20629530 | 2022-07-06T20:00:09Z | 2022-07-06T20:00:32Z | CONTRIBUTOR | I have the same problem in xarray 2022.3.0. The issue is that this creates unnecessary dask tasks in the graph and some operations acting on the coordinates unexpectedly trigger dask computations. "Unexpected" because the coordinates at the beginning of the process where not chunked. So computation that was expected to happen in the main thread (or not happen at all) is now happenning in the dask workers. An example: ```python3 import numpy as np import xarray as xr from dask.diagnostics import ProgressBar A 2D variableda = xr.DataArray( np.ones((12, 10)), dims=('x', 'y'), coords={'x': np.arange(12), 'y': np.arange(10)} ) A 1D variable sharing a dim with dadb = xr.DataArray( np.ones((12,)), dims=('x'), coords={'x': np.arange(12)} ) A non-dimension coordinatecx = xr.DataArray(np.zeros((12,)), dims=('x',), coords={'x': np.arange(12)}) Assign it to da and dbda = da.assign_coords(cx=cx) db = db.assign_coords(cx=cx) We need to chunk along yda = da.chunk({'y': 1}) Notice how
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Chunking causes unrelated non-dimension coordinate to become a dask array 651945063 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 2