home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

8 rows where issue = 650547452 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: reactions, created_at (date), updated_at (date)

user 4

  • fujiisoup 4
  • clausmichele 2
  • max-sixty 1
  • stale[bot] 1

author_association 3

  • MEMBER 5
  • CONTRIBUTOR 2
  • NONE 1

issue 1

  • Convolution operation · 8 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
1103536849 https://github.com/pydata/xarray/issues/4196#issuecomment-1103536849 https://api.github.com/repos/pydata/xarray/issues/4196 IC_kwDOAMm_X85BxqLR clausmichele 31700619 2022-04-20T06:57:06Z 2022-04-20T06:57:06Z CONTRIBUTOR

@max-sixty the issue you have mentioned does not include an implementation of a convolution operator, or did I miss something? Could you please reopen this issue?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Convolution operation 650547452
1100925924 https://github.com/pydata/xarray/issues/4196#issuecomment-1100925924 https://api.github.com/repos/pydata/xarray/issues/4196 IC_kwDOAMm_X85Bnsvk max-sixty 5635139 2022-04-17T18:09:14Z 2022-04-17T18:09:14Z MEMBER

I think this is closed by #4219, please reopen if not

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Convolution operation 650547452
1100912903 https://github.com/pydata/xarray/issues/4196#issuecomment-1100912903 https://api.github.com/repos/pydata/xarray/issues/4196 IC_kwDOAMm_X85BnpkH stale[bot] 26384082 2022-04-17T16:43:45Z 2022-04-17T16:43:45Z NONE

In order to maintain a list of currently relevant issues, we mark issues as stale after a period of inactivity

If this issue remains relevant, please comment here or remove the stale label; otherwise it will be marked as closed automatically

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Convolution operation 650547452
670865538 https://github.com/pydata/xarray/issues/4196#issuecomment-670865538 https://api.github.com/repos/pydata/xarray/issues/4196 MDEyOklzc3VlQ29tbWVudDY3MDg2NTUzOA== fujiisoup 6815844 2020-08-08T10:43:06Z 2020-08-08T10:43:06Z MEMBER

Or maybe we can convolve over the shared dimensions. python da = xr.DataArray(np.random.randn(15, 30), dims=['x', 'y']) kernel = xr.DataArray(np.random.randn(3, 3), dims=['x', 'y']) da.convolve(kernel, mode='same') Other dimensions maybe broadcasted.

{
    "total_count": 2,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Convolution operation 650547452
670842737 https://github.com/pydata/xarray/issues/4196#issuecomment-670842737 https://api.github.com/repos/pydata/xarray/issues/4196 MDEyOklzc3VlQ29tbWVudDY3MDg0MjczNw== fujiisoup 6815844 2020-08-08T08:09:58Z 2020-08-08T08:09:58Z MEMBER

Maybe we can keep this issue open.

python da.convolve(kernel, x='kx', y='ky', mode='same') would be a possible API?

The contribution will be very much appreciated ;)

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Convolution operation 650547452
670842411 https://github.com/pydata/xarray/issues/4196#issuecomment-670842411 https://api.github.com/repos/pydata/xarray/issues/4196 MDEyOklzc3VlQ29tbWVudDY3MDg0MjQxMQ== fujiisoup 6815844 2020-08-08T08:07:01Z 2020-08-08T08:07:01Z MEMBER

Maybe we can have a simpler API for convolution operation, though.

python In [1]: import numpy as np ...: import xarray as xr ...: ...: da = xr.DataArray(np.random.randn(15, 30), dims=['x', 'y']) ...: kernel = xr.DataArray(np.random.randn(3, 3), dims=['kx', 'ky']) ...: ...: da.rolling(x=3, y=3).construct(x='kx', y='ky').dot(kernel) Out[1]: <xarray.DataArray (x: 15, y: 30)> array([[ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ... [ nan, nan, -2.30319699e-01, 3.98542408e-01, 7.65734275e+00, -3.78602564e-01, -3.79670552e+00, -4.63870114e+00, 3.34264622e-02, -3.12097772e+00, -5.76697267e+00, 1.19804861e+00, -8.94696248e-01, 2.29308845e+00, -6.39524525e-01, 4.63574750e+00, 9.72065650e-01, -2.79080617e-01, -4.08284408e-01, 4.09498738e+00, 2.21513156e+00, 2.46188185e-01, -1.30140822e+00, -4.70525588e+00, -4.60012056e+00, 2.33333189e-01, -2.86204413e-01, -5.63190762e-01, 9.31915537e-01, 7.84188609e-01], [ nan, nan, 1.04286238e+00, -1.51693719e+00, 2.49199283e+00, 1.74931359e-01, -4.26361392e+00, -1.85066273e-01, -2.45780660e+00, -3.20920459e+00, -4.13765502e+00, -3.64119127e+00, 1.13819179e-01, -2.10588083e-01, -2.58307399e-02, -6.73602885e-01, 1.51186293e+00, 2.22395020e+00, 3.59169613e+00, 4.44203028e+00, 3.15528384e-01, -2.30913656e+00, 3.07864240e+00, -9.21743416e-01, -2.87995499e+00, -1.92025700e+00, -3.95047208e-01, 4.60378793e+00, 1.11828099e+00, 4.29419626e-01]]) Dimensions without coordinates: x, y

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Convolution operation 650547452
670840367 https://github.com/pydata/xarray/issues/4196#issuecomment-670840367 https://api.github.com/repos/pydata/xarray/issues/4196 MDEyOklzc3VlQ29tbWVudDY3MDg0MDM2Nw== clausmichele 31700619 2020-08-08T07:45:26Z 2020-08-08T07:45:26Z CONTRIBUTOR

Could you please give an example on how to perform a 2d convolution with a 3x3 kernel?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Convolution operation 650547452
653754721 https://github.com/pydata/xarray/issues/4196#issuecomment-653754721 https://api.github.com/repos/pydata/xarray/issues/4196 MDEyOklzc3VlQ29tbWVudDY1Mzc1NDcyMQ== fujiisoup 6815844 2020-07-04T11:34:19Z 2020-07-04T11:34:19Z MEMBER

One thing I would like to implement in somday is multi-dimensional rolling operation. The 1-dimensional convolution can be done with rolling -> construct -> dot, as can be seen in the doc page (see the last paragraph of http://xarray.pydata.org/en/stable/computation.html#rolling-window-operations)

This is can be extended to multiple dimensions, but it may not be straightforward.

{
    "total_count": 2,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Convolution operation 650547452

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 13.375ms · About: xarray-datasette