issue_comments
1 row where issue = 638947370 and user = 5637662 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- writing sparse to netCDF · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 843971807 | https://github.com/pydata/xarray/issues/4156#issuecomment-843971807 | https://api.github.com/repos/pydata/xarray/issues/4156 | MDEyOklzc3VlQ29tbWVudDg0Mzk3MTgwNw== | dschwoerer 5637662 | 2021-05-19T10:33:08Z | 2021-05-19T10:33:08Z | CONTRIBUTOR | I have hacked something that does support the reading and writing of sparse arrays to a netcdf file, however I didn't know how and where to put this within xarray. ``` def ds_to_netcdf(ds, fn): dsorg = ds ds = dsorg.copy() for v in ds: if hasattr(ds[v].data, "nnz") and ( hasattr(ds[v].data, "to_coo") or hasattr(ds[v].data, "linear_loc") ): coord = f"{v}_xarray_index" assert coord not in ds data = ds[v].data if hasattr(data, "to_coo"): data = data.to_coo() ds[coord] = coord, data.linear_loc() dims = ds[v].dims ds[coord].attrs["compress"] = " ".join(dims) at = ds[v].attrs ds[v] = coord, data.data ds[v].attrs = at ds[v].attrs["fill_value"] = str(data.fill_value) for d in dims: if d not in ds: ds[f"_len{d}"] = len(dsorg[d])
``` ``` def xr_open_dataset(fn): ds = xr.open_dataset(fn)
``` Has there been any progress since last year? |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
writing sparse to netCDF 638947370 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1