home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

1 row where issue = 602793814 and user = 14808389 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: updated_at (date)

user 1

  • keewis · 1 ✖

issue 1

  • Support flexible DataArray shapes in Dataset · 1 ✖

author_association 1

  • MEMBER 1
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
616211072 https://github.com/pydata/xarray/issues/3984#issuecomment-616211072 https://api.github.com/repos/pydata/xarray/issues/3984 MDEyOklzc3VlQ29tbWVudDYxNjIxMTA3Mg== keewis 14808389 2020-04-19T19:24:51Z 2020-04-20T10:35:44Z MEMBER

this ultimately depends on how the last dimension of A and B are related (or rather, how you want to model the relationship). If they are not related at all, simply use different dimension names: python In [2]: da1 = xr.DataArray(np.empty(shape=(2, 5, 100)), dims=("x", "y", "z1")) ...: da2 = xr.DataArray(np.empty(shape=(2, 5, 101)), dims=("x", "y", "z2")) ...: ds = xr.Dataset({"a": da1, "b": da2}) ...: ds Out[2]: <xarray.Dataset> Dimensions: (x: 2, y: 5, z1: 100, z2: 101) Dimensions without coordinates: x, y, z1, z2 Data variables: a (x, y, z1) float64 6.901e-310 6.901e-310 4.67e-310 ... 0.0 0.0 0.0 b (x, y, z2) float64 6.901e-310 6.901e-310 4.67e-310 ... 0.0 0.0 0.0

If they are related, assign coordinates to the dimensions: python In [3]: da1 = xr.DataArray( ...: np.empty(shape=(2, 5, 100)), ...: dims=("x", "y", "z"), ...: coords={"z": np.arange(100)}, ...: ) ...: da2 = xr.DataArray( ...: np.empty(shape=(2, 5, 101)), ...: dims=("x", "y", "z"), ...: coords={"z": np.arange(101)}, ...: ) ...: ds = xr.Dataset({"a": da1, "b": da2}) ...: ds Out[3]: <xarray.Dataset> Dimensions: (x: 2, y: 5, z: 101) Coordinates: * z (z) int64 0 1 2 3 4 5 6 7 8 9 10 ... 91 92 93 94 95 96 97 98 99 100 Dimensions without coordinates: x, y Data variables: a (x, y, z) float64 6.901e-310 6.901e-310 ... 6.917e-323 nan b (x, y, z) float64 6.901e-310 6.901e-310 ... 6.901e-310 -6.35e+53 In this case, A does not have the label z=100, so it is treated as missing (you should be familiar with the concept of "missing values" since you know pandas).

{
    "total_count": 4,
    "+1": 4,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Support flexible DataArray shapes in Dataset  602793814

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 2401.159ms · About: xarray-datasette