issue_comments
10 rows where issue = 596606599 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- Sort DataArray by data values along one dim · 10 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1094072929 | https://github.com/pydata/xarray/issues/3957#issuecomment-1094072929 | https://api.github.com/repos/pydata/xarray/issues/3957 | IC_kwDOAMm_X85BNjph | max-sixty 5635139 | 2022-04-09T15:52:19Z | 2022-04-09T15:52:19Z | MEMBER | I'm trying to close issues that aren't active — please reopen with a MCVE if this is still an issue. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sort DataArray by data values along one dim 596606599 | |
868260575 | https://github.com/pydata/xarray/issues/3957#issuecomment-868260575 | https://api.github.com/repos/pydata/xarray/issues/3957 | MDEyOklzc3VlQ29tbWVudDg2ODI2MDU3NQ== | jrbuzan 40410085 | 2021-06-25T06:33:47Z | 2021-06-25T07:45:20Z | NONE | Hello @zxdawn and @JavierRuano: I am new to python. And I've been working on a different approach to this issue of ranking data on 3D array. I believe I am close to a solution. I am able to generate ranks on a 3D array, but I can't figure out how to map those ranks to reorder the data from lowest to highest using the produced indexes. Perhaps you might know what needs to happen next? Cheers, -Jonathan code: import xarray as xr import os import numpy as np from xarray import DataArray from dask.distributed import Client c = Client() I am trying to produce a simpler version: coding: utf-8In[1]:import xarray as xr import os import numpy as np from xarray import DataArray In[2]:from dask.distributed import Client c = Client() In[19]:def calculate_rank(x): return x.rank(dim='time') In[4]:lat = 2 In[5]:lon = 3 In[6]:time = 5 In[7]:data = [[[ 29, 19, 8], [ 12, 7, 21]],
In[8]:data_xr = xr.DataArray(data, dims=['time', 'lat', 'lon'], coords={'time': np.arange(time)}) In[9]:data_xr.values Groupby on all of the dataIn[10]:stacked_object = data_xr.stack(gridcell=['lat','lon'])#.chunk({'gridcell':500}) In[11]:stacked_object.load() In[20]:TSA_Rank = stacked_object.groupby('gridcell').apply(calculate_rank).unstack() In[21]:TSA_Rank In[22]:TSA_Rank.values array([[[5., 3., 2.], [2., 1., 3.]],
In[23]:data_xr.values array([[[29, 19, 8], [12, 7, 21]],
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sort DataArray by data values along one dim 596606599 | |
707744782 | https://github.com/pydata/xarray/issues/3957#issuecomment-707744782 | https://api.github.com/repos/pydata/xarray/issues/3957 | MDEyOklzc3VlQ29tbWVudDcwNzc0NDc4Mg== | zxdawn 30388627 | 2020-10-13T13:38:34Z | 2020-10-13T13:38:34Z | NONE | @JavierRuano I find the simpler solution from a similar question in stack overflow.
Complete example``` import xarray as xr import numpy as np x = 4 y = 2 z = 4 data = np.arange(xyz).reshape(z, y, x) 3d array with coordscld_1 = xr.DataArray(data, dims=['z', 'y', 'x'], coords={'z': np.arange(z)}) 2d array without coordscld_2 = xr.DataArray(np.arange(xy).reshape(y, x)1.5+1, dims=['y', 'x']) expand 2d to 3dcld_2 = cld_2.expand_dims(z=[4]) concatcld = xr.concat([cld_1, cld_2], dim='z') paired arraypair = cld.copy(data=np.arange(xy(z+1)).reshape(z+1, y, x)) sort_pair = np.take_along_axis(pair.values, cld.argsort(axis=0), axis=0) print(cld) print(pair) print(sort_pair) ``` Output: ``` <xarray.DataArray (z: 5, y: 2, x: 4)> array([[[ 0. , 1. , 2. , 3. ], [ 4. , 5. , 6. , 7. ]],
Coordinates: * z (z) int64 0 1 2 3 4 Dimensions without coordinates: y, x <xarray.DataArray (z: 5, y: 2, x: 4)> array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7]],
Coordinates: * z (z) int64 0 1 2 3 4 Dimensions without coordinates: y, x [[[ 0 1 2 3] [ 4 5 6 7]] [[32 33 34 35] [36 37 38 39]] [[ 8 9 10 11] [12 13 14 15]] [[16 17 18 19] [20 21 22 23]] [[24 25 26 27] ``` Note, I have to use
|
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sort DataArray by data values along one dim 596606599 | |
611483929 | https://github.com/pydata/xarray/issues/3957#issuecomment-611483929 | https://api.github.com/repos/pydata/xarray/issues/3957 | MDEyOklzc3VlQ29tbWVudDYxMTQ4MzkyOQ== | zxdawn 30388627 | 2020-04-09T11:43:51Z | 2020-04-09T11:43:51Z | NONE | I need to use |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sort DataArray by data values along one dim 596606599 | |
611348892 | https://github.com/pydata/xarray/issues/3957#issuecomment-611348892 | https://api.github.com/repos/pydata/xarray/issues/3957 | MDEyOklzc3VlQ29tbWVudDYxMTM0ODg5Mg== | zxdawn 30388627 | 2020-04-09T06:13:07Z | 2020-04-09T06:13:07Z | NONE | @JavierRuano When the |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sort DataArray by data values along one dim 596606599 | |
611302006 | https://github.com/pydata/xarray/issues/3957#issuecomment-611302006 | https://api.github.com/repos/pydata/xarray/issues/3957 | MDEyOklzc3VlQ29tbWVudDYxMTMwMjAwNg== | JavierRuano 34353851 | 2020-04-09T03:04:53Z | 2020-04-09T03:04:53Z | NONE | Yes, but with a lot of information, dask is the only option, and working well with the index. https://github.com/dask/dask/issues/958 El jue., 9 abr. 2020 a las 2:54, Xin Zhang (notifications@github.com) escribió:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sort DataArray by data values along one dim 596606599 | |
611299453 | https://github.com/pydata/xarray/issues/3957#issuecomment-611299453 | https://api.github.com/repos/pydata/xarray/issues/3957 | MDEyOklzc3VlQ29tbWVudDYxMTI5OTQ1Mw== | zxdawn 30388627 | 2020-04-09T02:54:30Z | 2020-04-09T02:54:30Z | NONE | @JavierRuano Nice suggestion! I combine them to df = ds.to_dataframe() new_ds = df.sort_values(by='cld').to_xarray().transpose() ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sort DataArray by data values along one dim 596606599 | |
611295039 | https://github.com/pydata/xarray/issues/3957#issuecomment-611295039 | https://api.github.com/repos/pydata/xarray/issues/3957 | MDEyOklzc3VlQ29tbWVudDYxMTI5NTAzOQ== | JavierRuano 34353851 | 2020-04-09T02:36:56Z | 2020-04-09T02:36:56Z | NONE | You could access directly to data as ndarray and you could transform dataarray into a dataframe of pandas. Pandas has sort_values. You searched sorting values according z, it is shown in z index. With more dataArray you could read about Dataset concept... but i dont develop xarray, i am only user of that module, perhaps you search another type of answer. http://xarray.pydata.org/en/stable/generated/xarray.Dataset.sortby.html according to values of 1-D dataarrays that share dimension with calling object. El jue., 9 abr. 2020 4:22, Xin Zhang notifications@github.com escribió:
|
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sort DataArray by data values along one dim 596606599 | |
611291129 | https://github.com/pydata/xarray/issues/3957#issuecomment-611291129 | https://api.github.com/repos/pydata/xarray/issues/3957 | MDEyOklzc3VlQ29tbWVudDYxMTI5MTEyOQ== | zxdawn 30388627 | 2020-04-09T02:22:33Z | 2020-04-09T02:22:33Z | NONE | @JavierRuano Thank you very much. This example is a special case. If the order of |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sort DataArray by data values along one dim 596606599 | |
611047964 | https://github.com/pydata/xarray/issues/3957#issuecomment-611047964 | https://api.github.com/repos/pydata/xarray/issues/3957 | MDEyOklzc3VlQ29tbWVudDYxMTA0Nzk2NA== | JavierRuano 34353851 | 2020-04-08T16:08:00Z | 2020-04-08T16:08:00Z | NONE | cld.reindex(z=cld[:,0,0].sortby(cld[:,0,0]).z) with this solution [0] [1] <xarray.DataArray (z: 5, y: 2, x: 4)> array([[[ 0. , 1. , 2. , 3. ], [ 4. , 5. , 6. , 7. ]],
Coordinates: * z (z) int64 0 4 1 2 3 Dimensions without coordinates: y, x [0] https://stackoverflow.com/questions/41077393/how-to-sort-the-index-of-a-xarray-dataset-dataarray [1] https://github.com/pydata/xarray/issues/967 El mié., 8 abr. 2020 a las 14:06, Xin Zhang (notifications@github.com) escribió:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sort DataArray by data values along one dim 596606599 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 4