issue_comments
3 rows where issue = 595784008 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- Implement `value_counts` method · 3 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1115469330 | https://github.com/pydata/xarray/issues/3945#issuecomment-1115469330 | https://api.github.com/repos/pydata/xarray/issues/3945 | IC_kwDOAMm_X85CfLYS | stale[bot] 26384082 | 2022-05-02T23:37:47Z | 2022-05-02T23:37:47Z | NONE | In order to maintain a list of currently relevant issues, we mark issues as stale after a period of inactivity If this issue remains relevant, please comment here or remove the |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Implement `value_counts` method 595784008 | |
| 610426980 | https://github.com/pydata/xarray/issues/3945#issuecomment-610426980 | https://api.github.com/repos/pydata/xarray/issues/3945 | MDEyOklzc3VlQ29tbWVudDYxMDQyNjk4MA== | dcherian 2448579 | 2020-04-07T14:41:08Z | 2020-04-07T14:41:08Z | MEMBER | xhistogram probably does what you want: https://github.com/xgcm/xhistogram |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Implement `value_counts` method 595784008 | |
| 610407293 | https://github.com/pydata/xarray/issues/3945#issuecomment-610407293 | https://api.github.com/repos/pydata/xarray/issues/3945 | MDEyOklzc3VlQ29tbWVudDYxMDQwNzI5Mw== | Hoeze 1200058 | 2020-04-07T14:06:03Z | 2020-04-07T14:17:12Z | NONE | First prototype: ```python def value_counts(v, global_unique_values, newdim: str): unique_values, counts = dask.compute(*np.unique(v, return_counts=True))
def xr_value_counts(obj, unique_values=None, **kwargs): (newdim, apply_dims), = kwargs.items()
test_da = xr.DataArray( [ [0,1,1,1,3,4], [0,6,1,1,3,4], ], dims=["dim_0", "dim_1"], coords={"dim_1": [2,5,7,4,3,6]}, ) test_values = xr_value_counts(test_da, value_counts="dim_1") assert np.all( test_values.values == np.array([ [1, 3, 1, 1, 0], [1, 2, 1, 1, 1] ]) ) assert np.all( test_values.value_counts == np.array([0, 1, 3, 4, 6]) ) ``` Example: ```python test_da = xr.DataArray( [ [0,1,1,1,3,4], [0,6,1,1,3,4], ], dims=["dim_0", "dim_1"], coords={"dim_1": [2,5,7,4,3,6]}, ) print(test_da) <xarray.DataArray (dim_0: 2, dim_1: 6)>array([[0, 1, 1, 1, 3, 4],[0, 6, 1, 1, 3, 4]])Coordinates:* dim_1 (dim_1) int64 2 5 7 4 3 6Dimensions without coordinates: dim_0print(xr_value_counts(test_da, value_counts="dim_1")) <xarray.DataArray (dim_0: 2, value_counts: 5)>array([[1, 3, 1, 1, 0],[1, 2, 1, 1, 1]])Coordinates:* value_counts (value_counts) int64 0 1 3 4 6Dimensions without coordinates: dim_0``` Probably not the fastest solution and executes eagerly but it works. What do you think? |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Implement `value_counts` method 595784008 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 3