issue_comments
2 rows where issue = 588126763 and user = 5635139 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- consecutive time selection · 2 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 604779924 | https://github.com/pydata/xarray/issues/3896#issuecomment-604779924 | https://api.github.com/repos/pydata/xarray/issues/3896 | MDEyOklzc3VlQ29tbWVudDYwNDc3OTkyNA== | max-sixty 5635139 | 2020-03-27T02:18:48Z | 2020-03-27T02:18:48Z | MEMBER | OK, that's a bit harder but not impossible. You could take that, run |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
consecutive time selection 588126763 | |
| 604499916 | https://github.com/pydata/xarray/issues/3896#issuecomment-604499916 | https://api.github.com/repos/pydata/xarray/issues/3896 | MDEyOklzc3VlQ29tbWVudDYwNDQ5OTkxNg== | max-sixty 5635139 | 2020-03-26T15:35:19Z | 2020-03-26T15:35:19Z | MEMBER | IIUC, you could have, in order: - rolling 3 month SST - bool on whether that's above 0.5 - rolling 5 month count of that - bool on whether that's equal to 5 |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
consecutive time selection 588126763 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1