issue_comments
where issue = 565626748 and user = 14808389 sorted by updated_at descending
This data as json, CSV (advanced)
These facets timed out: author_association, issue
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
587130487 | https://github.com/pydata/xarray/issues/3770#issuecomment-587130487 | https://api.github.com/repos/pydata/xarray/issues/3770 | MDEyOklzc3VlQ29tbWVudDU4NzEzMDQ4Nw== | keewis 14808389 | 2020-02-17T19:29:27Z | 2020-02-17T19:29:27Z | MEMBER | The docs state that the builtin That said I really like the callable support of pandas (e.g. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`where` ignores incorrectly typed arguments 565626748 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1