issue_comments
1 row where issue = 558519267 and user = 4264660 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- DataArrayCoarsen does not have a map or reduce function · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
738070264 | https://github.com/pydata/xarray/issues/3741#issuecomment-738070264 | https://api.github.com/repos/pydata/xarray/issues/3741 | MDEyOklzc3VlQ29tbWVudDczODA3MDI2NA== | oarcher 4264660 | 2020-12-03T15:15:37Z | 2020-12-03T15:15:37Z | NONE | As a workaround, it's possible to use rolling and .sel to keep only adjacent windows: ```python ds <xarray.Dataset> Dimensions: (x: 237, y: 69, z: 2) Coordinates: * x (x) int64 0 1 2 3 4 5 6 7 8 ... 228 229 230 231 232 233 234 235 236 * y (y) int64 0 1 2 3 4 5 6 7 8 9 10 ... 59 60 61 62 63 64 65 66 67 68 * z (z) int64 0 1 Data variables: data2D (x, y) float64 dask.array<chunksize=(102, 42), meta=np.ndarray> data3D (x, y, z) float64 dask.array<chunksize=(102, 42, 2), meta=np.ndarray> window sizewindow = {'x' : 51, 'y' : 21} window dims, prefixed by 'k_'window_dims = {k: "k_%s" % k for k in window.keys()} dataset, with new dims as window. .sel drop sliding windows, to keep only adjacent ones.ds_win = ds.rolling(window,center=True).construct(window_dims).sel( {k: slice(window[k]//2,None,window[k]) for k in window.keys()}) <xarray.Dataset> Dimensions: (k_x: 51, k_y: 21, x: 5, y: 3, z: 2) Coordinates: * x (x) int64 25 76 127 178 229 * y (y) int64 10 31 52 * z (z) int64 0 1 Dimensions without coordinates: k_x, k_y Data variables: data2D (x, y, k_x, k_y) float64 dask.array<chunksize=(2, 2, 51, 21), meta=np.ndarray> data3D (x, y, z, k_x, k_y) float64 dask.array<chunksize=(2, 2, 2, 51, 21), meta=np.ndarray> now, use reduce on a standard dataset, using window k_dims as dimensionsds_red = ds_win.reduce(np.mean,dim=window_dims.values()) <xarray.Dataset> Dimensions: (x: 5, y: 3, z: 2) Coordinates: * x (x) int64 25 76 127 178 229 * y (y) int64 10 31 52 * z (z) int64 0 1 Data variables: data2D (x, y) float64 dask.array<chunksize=(2, 2), meta=np.ndarray> data3D (x, y, z) float64 dask.array<chunksize=(2, 2, 2), meta=np.ndarray> ``` Note that i was unable to use |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
DataArrayCoarsen does not have a map or reduce function 558519267 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1