issue_comments
3 rows where issue = 550355524 and user = 1312546 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- dask.optimize on xarray objects · 3 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
690378323 | https://github.com/pydata/xarray/issues/3698#issuecomment-690378323 | https://api.github.com/repos/pydata/xarray/issues/3698 | MDEyOklzc3VlQ29tbWVudDY5MDM3ODMyMw== | TomAugspurger 1312546 | 2020-09-10T15:42:54Z | 2020-09-10T15:42:54Z | MEMBER | Thanks for confirming. I'll take another look at this today then. On Thu, Sep 10, 2020 at 10:30 AM Deepak Cherian notifications@github.com wrote:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
dask.optimize on xarray objects 550355524 | |
689808725 | https://github.com/pydata/xarray/issues/3698#issuecomment-689808725 | https://api.github.com/repos/pydata/xarray/issues/3698 | MDEyOklzc3VlQ29tbWVudDY4OTgwODcyNQ== | TomAugspurger 1312546 | 2020-09-09T20:38:39Z | 2020-09-09T20:38:39Z | MEMBER | FYI, @dcherian your recent PR to dask fixed this example. Playing around with chunk sizes, it seems to have fixed it even when the chunk size exceeds |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
dask.optimize on xarray objects 550355524 | |
592101136 | https://github.com/pydata/xarray/issues/3698#issuecomment-592101136 | https://api.github.com/repos/pydata/xarray/issues/3698 | MDEyOklzc3VlQ29tbWVudDU5MjEwMTEzNg== | TomAugspurger 1312546 | 2020-02-27T18:13:28Z | 2020-02-27T18:13:28Z | MEMBER | It looks like xarray is getting a bad task graph after the optimize. ```python In [1]: import xarray as xr import dask In [2]: import dask In [3]: a = dask.array.ones((10,5), chunks=(1,3)) ...: a = dask.optimize(a)[0] In [4]: da = xr.DataArray(a.compute()).chunk({"dim_0": 5}) ...: da = dask.optimize(da)[0] In [5]: dict(da.dask_graph()) Out[5]: {('xarray-<this-array>-e2865aa10d476e027154771611541f99', 1, 0): (<function _operator.getitem(a, b, /)>, 'xarray-<this-array>-e2865aa10d476e027154771611541f99', (slice(5, 10, None), slice(0, 5, None))), ('xarray-<this-array>-e2865aa10d476e027154771611541f99', 0, 0): (<function _operator.getitem(a, b, /)>, 'xarray-<this-array>-e2865aa10d476e027154771611541f99', (slice(0, 5, None), slice(0, 5, None)))} ``` Notice that are references to If we manually insert that, you'll see things work ```python In [9]: dsk['xarray-<this-array>-e2865aa10d476e027154771611541f99'] = da._to_temp_dataset()[xr.core.dataarray._THIS_ARRAY] In [11]: dask.get(dsk, keys=[('xarray-<this-array>-e2865aa10d476e027154771611541f99', 1, 0)]) Out[11]: (<xarray.DataArray \<this-array> (dim_0: 5, dim_1: 5)> dask.array<getitem, shape=(5, 5), dtype=float64, chunksize=(5, 5), chunktype=numpy.ndarray> Dimensions without coordinates: dim_0, dim_1,) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
dask.optimize on xarray objects 550355524 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1